Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey

We develop a new method to constrain the star formation histories, dust attenuation and stellar masses of galaxies. It is based on two stellar absorption-line indices, the 4000-A break strength and the Balmer absorption-line index Hδ A . Together, these indices allow us to constrain the mean stellar ages of galaxies and the fractional stellar mass formed in bursts over the past few Gyr. A comparison with broad-band photometry then yields estimates of dust attenuation and of stellar mass. We generate a large library of Monte Carlo realizations of different star formation histories, including starbursts of varying strength and a range of metallicities. We use this library to generate median likelihood estimates of burst mass fractions, dust attenuation strengths, stellar masses and stellar mass-to-light ratios for a sample of 122 808 galaxies drawn from the Sloan Digital Sky Survey. The typical 95 per cent confidence range in our estimated stellar masses is ′40 per cent. We study how the stellar mass-to-light ratios of galaxies vary as a function of absolute magnitude, concentration index and photometric passband and how dust attenuation varies as a function of absolute magnitude and 4000-A break strength. We also calculate how the total stellar mass of the present Universe is distributed over galaxies as a function of their mass, size, concentration, colour, burst mass fraction and surface mass density. We find that most of the stellar mass in the local Universe resides in galaxies that have, to within a factor of approximately 2, stellar masses ∼5 x 10 1 0 M O ., half-light radii ∼3 kpc and half-light surface mass densities ∼10 9 M O .kpc - 2 . The distribution of D n (4000) is strongly bimodal, showing a clear division between galaxies dominated by old stellar populations and galaxies with more recent star formation.

[1]  M. Verheijen The Ursa Major Cluster of Galaxies. V. H I Rotation Curve Shapes and the Tully-Fisher Relations , 2001, astro-ph/0108225.

[2]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[3]  Walter A. Siegmund,et al.  The Luminosity Function of Galaxies in SDSS Commissioning Data , 2000, astro-ph/0012085.

[4]  S. Faber,et al.  Old Stellar Populations. IV. Empirical Fitting Functions for Features in the Spectra of G and K Stars , 1993 .

[5]  R. Ellis,et al.  The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions , 2000, astro-ph/0012429.

[6]  E. Bell,et al.  Stellar Mass-to-Light Ratios and the Tully-Fisher Relation , 2000, astro-ph/0008056.

[7]  T. Heckman,et al.  Internal Absorption and the Luminosity of Disk Galaxies , 1996 .

[8]  J. Huchra,et al.  H II regions and the abundance properties of spiral galaxies , 1994 .

[9]  Michael C. Liu,et al.  Theoretical Predictions for Surface Brightness Fluctuations and Implications for Stellar Populations of Elliptical Galaxies , 2000, astro-ph/0004367.

[10]  S. White,et al.  Satellites of spiral galaxies , 1993 .

[11]  J. Gunn,et al.  A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.

[12]  V. Narayanan,et al.  Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data , 2001, astro-ph/0107201.

[13]  S. Charlot,et al.  Spectral evolution of stellar populations using isochrone synthesis , 1993 .

[14]  G. Kauffmann,et al.  A unified model for the evolution of galaxies and quasars , 1999, astro-ph/9906493.

[15]  Maarten Schmidt,et al.  Space Distribution and Luminosity Functions of Quasi-Stellar Radio Sources , 1968 .

[16]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[17]  A. G. Bruzual Spectral evolution of galaxies. 1. Early-type systems , 1983 .

[18]  M. Fukugita,et al.  Statistical Properties of Bright Galaxies in the Sloan Digital Sky Survey Photometric System , 2001, astro-ph/0105401.

[19]  S. Pedraz,et al.  Empirical calibration of the \lambda 4000 \AA break , 1999, astro-ph/9905264.

[20]  J. Brinchmann,et al.  The Mass Assembly and Star Formation Characteristics of Field Galaxies of Known Morphology , 2000, The Astrophysical journal.

[21]  R. Nichol,et al.  The dependence of star formation history and internal structure on stellar mass for 105 low‐redshift galaxies , 2002, astro-ph/0205070.

[22]  D. A. Hunter,et al.  A library of stellar spectra. , 1984 .

[23]  M. Verheijen The Ursa Major Cluster of Galaxies. V. H I Rotation Curve Shapes and the Tully-Fisher Relations , 1999, astro-ph/0108225.

[24]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[25]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[26]  S. M. Fall,et al.  A Simple Model for the Absorption of Starlight by Dust in Galaxies , 2000, astro-ph/0003128.

[27]  D. Ottaviani,et al.  Hγ and Hδ Absorption Features in Stars and Stellar Populations , 1997 .

[28]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[29]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[30]  R. Kennicutt The Rate of star formation in normal disk galaxies , 1983 .

[31]  R. L. Peterson,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[32]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[33]  A. Pickles A Stellar Spectral Flux Library: 1150–25000 Å , 1998 .

[34]  Alan Uomoto,et al.  The [CLC][ITAL]u[/ITAL][/CLC][arcmin]′[CLC][ITAL]g[/ITAL][/CLC][arcmin]′[CLC][ITAL]r[/ITAL][/CLC][arcmin]′[CLC][ITAL]i[/ITAL][/CLC][arcmin]′[CLC][ITAL]z[/ITAL][/CLC][arcmin]′ Standard-Star System , 2002 .

[35]  Hia,et al.  Differential Galaxy Evolution in Cluster and Field Galaxies at z ≈ 0.3 , 1999, astro-ph/9906470.