The influence of cobalt incorporation and cobalt precursor selection on the structure and bioactivity of sol–gel-derived bioactive glass

[1]  Julian R. Jones,et al.  Bouncing and 3D printable hybrids with self-healing properties , 2018 .

[2]  M. Mozafari,et al.  Bioactive Glasses: Sprouting Angiogenesis in Tissue Engineering. , 2018, Trends in biotechnology.

[3]  E. Menaszek,et al.  A simple way of modulating in vitro angiogenic response using Cu and Co-doped bioactive glasses , 2018 .

[4]  M. Stevens,et al.  Cobalt-containing bioactive glasses reduce human mesenchymal stem cell chondrogenic differentiation despite HIF-1α stabilisation , 2018, Journal of the European Ceramic Society.

[5]  M. Medina,et al.  Copper-containing mesoporous bioactive glass promotes angiogenesis in an in vivo zebrafish model. , 2017, Acta biomaterialia.

[6]  Julian R. Jones,et al.  Phosphate content affects structure and bioactivity of sol‐gel silicate bioactive glasses , 2017 .

[7]  Julian R. Jones,et al.  Influence of calcium and phosphorus release from bioactive glasses on viability and differentiation of dental pulp stem cells , 2017, Journal of Materials Science.

[8]  Julian R. Jones,et al.  Synthesis and dissolution behaviour of CaO/SrO-containing sol–gel-derived 58S glasses , 2017, Journal of Materials Science.

[9]  Julian R. Jones,et al.  Lithium-silicate sol–gel bioactive glass and the effect of lithium precursor on structure–property relationships , 2016, Journal of Sol-Gel Science and Technology.

[10]  Xiaojian Wang,et al.  Biodegradable mesoporous bioactive glass nanospheres for drug delivery and bone tissue regeneration , 2016, Nanotechnology.

[11]  P. Netti,et al.  Multilayered silica-biopolymer nanocapsules with a hydrophobic core and a hydrophilic tunable shell thickness. , 2016, Nanoscale.

[12]  M. Catauro,et al.  Synthesis, structural, spectroscopic and thermoanalytical study of sol–gel derived SiO2–CaO–P2O5 gel and ceramic materials , 2016 .

[13]  C. Munteanu,et al.  Influence of ZnO addition on the structural, in vitro behavior and antimicrobial activity of sol–gel derived CaO–P2O5–SiO2 bioactive glasses , 2016 .

[14]  T. Orsière,et al.  Poorly soluble cobalt oxide particles trigger genotoxicity via multiple pathways , 2015, Particle and Fibre Toxicology.

[15]  Edgar Dutra Zanotto,et al.  Sol–gel synthesis, structure, sintering and properties of bioactive and inert nano-apatite–zirconia glass–ceramics , 2015 .

[16]  N. Ocarino,et al.  Effect of the ionic product of bioglass 60s on osteoblastic activity in canines , 2015, BMC Veterinary Research.

[17]  D. Boyd,et al.  Composition-structure-properties relationship of strontium borate glasses for medical applications. , 2015, Journal of biomedical materials research. Part A.

[18]  Gavin Jell,et al.  Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair. , 2015, Biomaterials.

[19]  H. Palza,et al.  Sol–gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics , 2015, Biomedical materials.

[20]  Chikara Ohtsuki,et al.  A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants , 2015, Journal of Materials Science: Materials in Medicine.

[21]  Aldo R Boccaccini,et al.  Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. , 2015, Acta biomaterialia.

[22]  H. Mansur,et al.  Synthesis and characterization of bioactive glass particles using an ultrasound-assisted sol–gel process: Engineering the morphology and size of sonogels via a poly(ethylene glycol) dispersing agent , 2014 .

[23]  M. Wei,et al.  Synthesis and characterization of cobalt-substituted hydroxyapatite powders , 2014 .

[24]  W. Peukert,et al.  Cobalt-releasing 1393 bioactive glass-derived scaffolds for bone tissue engineering applications. , 2014, ACS applied materials & interfaces.

[25]  Yan Li,et al.  Influence of SiO2 on the structure-controlled synthesis and magnetic properties of prismatic MnO2 nanorods , 2013, Nanotechnology.

[26]  J. Motuzas,et al.  Structural investigation of cobalt-doped silica derived from sol–gel synthesis , 2013 .

[27]  J. Nychka,et al.  Sol–Gel Synthesis of Bioactive Glass‐Ceramic 45S5 and its in vitro Dissolution and Mineralization Behavior , 2013 .

[28]  Edgar Dutra Zanotto,et al.  The influence of phosphorus precursors on the synthesis and bioactivity of SiO2–CaO–P2O5 sol–gel glasses and glass–ceramics , 2013, Journal of Materials Science: Materials in Medicine.

[29]  Julian R. Jones,et al.  Effect of calcium source on structure and properties of sol-gel derived bioactive glasses. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[30]  F. Branda,et al.  Heparin conjugated silica nanoparticle synthesis. , 2012, Materials science & engineering. C, Materials for biological applications.

[31]  P. Bennekou,et al.  Cobalt metabolism and toxicology--a brief update. , 2012, The Science of the total environment.

[32]  Julian R. Jones,et al.  Influence of strontium for calcium substitution in bioactive glasses on degradation, ion release and apatite formation , 2012, Journal of The Royal Society Interface.

[33]  Ashraf F. Ali,et al.  Fabrication and characterization of ZnO modified bioactive glass nanoparticles , 2012 .

[34]  Wei Fan,et al.  Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. , 2012, Biomaterials.

[35]  M. Vallet‐Regí,et al.  Substitutions of cerium, gallium and zinc in ordered mesoporous bioactive glasses. , 2011, Acta biomaterialia.

[36]  Aldo R Boccaccini,et al.  A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. , 2011, Biomaterials.

[37]  Andrea R. Gerson,et al.  Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn , 2010 .

[38]  G. Jell,et al.  Synthesis and characterization of hypoxia-mimicking bioactive glasses for skeletal regeneration , 2010 .

[39]  María Vallet-Regí,et al.  Sol-gel silica-based biomaterials and bone tissue regeneration. , 2010, Acta biomaterialia.

[40]  C. Paluszkiewicz,et al.  Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite , 2010 .

[41]  R. Hill,et al.  Influence of strontium and the importance of glass chemistry and structure when designing bioactive glasses for bone regeneration. , 2010, Acta biomaterialia.

[42]  Gavin Jell,et al.  The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. , 2010, Biomaterials.

[43]  L. N. Furini,et al.  Synthesis and thermal properties of nanoparticles of bioactive glasses containing silver , 2009 .

[44]  S. Moane,et al.  The effect of composition on ion release from Ca–Sr–Na–Zn–Si glass bone grafts , 2009, Journal of materials science. Materials in medicine.

[45]  Julian R. Jones,et al.  Nanostructure evolution and calcium distribution in sol-gel derived bioactive glass , 2009 .

[46]  E. Fortunato,et al.  Sol–gel cobalt oxide–silica nanocomposite thin films for gas sensing applications , 2008 .

[47]  Tadashi Kokubo,et al.  How useful is SBF in predicting in vivo bone bioactivity? , 2006, Biomaterials.

[48]  Julian R Jones,et al.  Optimising bioactive glass scaffolds for bone tissue engineering. , 2006, Biomaterials.

[49]  M. Kacimi,et al.  Cobalt-exchanged hydroxyapatite catalysts: Magnetic studies, spectroscopic investigations, performance in 2-butanol and ethane oxidative dehydrogenations , 2004 .

[50]  M. Hupa,et al.  FTIR and XPS studies of bioactive silica based glasses , 2003 .

[51]  S. Yuvaraj,et al.  Thermal Decomposition of Metal Nitrates in Air and Hydrogen Environments , 2003 .

[52]  F. Ruiz,et al.  Cobalt Oxide/Silica Xerogels Powders: X-Ray Diffraction, Infrared and Visible Absorption Studies , 2002 .

[53]  K. J. Rao,et al.  Infrared Spectroscopic Study of LiCoO2 Thin Films , 2002 .

[54]  L L Hench,et al.  Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. , 2001, Journal of biomedical materials research.

[55]  J. Caro,et al.  Regulation of endothelin-1 gene expression in human microvascular endothelial cells by hypoxia and cobalt: Role of hypoxia responsive element , 2000, Molecular and Cellular Biochemistry.

[56]  M. Longaker,et al.  VEGF expression in an osteoblast-like cell line is regulated by a hypoxia response mechanism. , 2000, American journal of physiology. Cell physiology.

[57]  M. Vallet‐Regí,et al.  Surface and Chemical Study of SiO2·P2O5·CaO·(MgO) Bioactive Glasses , 2000 .

[58]  M. Salim,et al.  XPS study of transition metal doped silicate glasses , 1999 .

[59]  D. Holland,et al.  XPS and magnetization studies of cobalt sodium silicate glasses , 1997 .

[60]  A. Clark,et al.  Effect of Texture on the Rate of Hydroxyapatite Formation on Gel-Silica Surface , 1995 .

[61]  L L Hench,et al.  An investigation of bioactive glass powders by sol-gel processing. , 1991, Journal of applied biomaterials : an official journal of the Society for Biomaterials.

[62]  D. W. Rice,et al.  Interpretation of the x-ray photoemission spectra of cobalt oxides and cobalt oxide surfaces , 1976 .

[63]  Larry L. Hench,et al.  Bonding mechanisms at the interface of ceramic prosthetic materials , 1971 .

[64]  H. Mansur,et al.  Thermogelling chitosan-collagen-bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering. , 2016, Materials science & engineering. C, Materials for biological applications.

[65]  Julian R. Jones,et al.  Hypoxia inducible factor-stabilizing bioactive glasses for directing mesenchymal stem cell behavior. , 2015, Tissue engineering. Part A.

[66]  Julian R Jones,et al.  Review of bioactive glass: from Hench to hybrids. , 2013, Acta biomaterialia.

[67]  H. Mansur,et al.  Synthesis, characterization and cytocompatibility of spherical bioactive glass nanoparticles for potential hard tissue engineering applications. , 2013, Biomedical materials.

[68]  F. Moztarzadeh,et al.  Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2-CaO-P2O5-MgO bioglass , 2009 .

[69]  L. Hench,et al.  Characterization of melt-derived 45S5 and sol-gel-derived 58S bioactive glasses. , 2001, Journal of biomedical materials research.

[70]  D. Gonbeau,et al.  Systematic XPS studies of metal oxides, hydroxides and peroxides , 2000 .

[71]  M. Biesinger,et al.  Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni , 2022 .