Entanglement and squeezing with identical particles: ultracold atom quantum metrology

In quantum metrological applications based on ultracold atom systems, entangled initial states are thought necessary to achieve sub-shot-noise accuracies. This conclusion, although strictly true for systems of distinguishable particles, does no longer hold for systems of identical particles. Indeed, while quantum non-locality is necessary, it can be encoded into the interferometric apparatus and not into the initial states. In particular, no preliminary spin-squeezing is necessary to reach quantum performances in metrological applications of ultracold atom physics.

[1]  Yun Li,et al.  Atom-chip-based generation of entanglement for quantum metrology , 2010, Nature.

[2]  Barry C. Sanders,et al.  Spin squeezing and pairwise entanglement for symmetric multiqubit states , 2003 .

[3]  L. Pezzè,et al.  Entanglement, nonlinear dynamics, and the heisenberg limit. , 2007, Physical review letters.

[4]  Many-particle entanglement in two-component Bose-Einstein condensates , 2002, cond-mat/0205369.

[5]  Luca Marinatto,et al.  Entanglement and Properties of Composite Quantum Systems: A Conceptual and Mathematical Analysis , 2001 .

[6]  Shunlong Luo,et al.  Quantum Fisher Information and Uncertainty Relations , 2000 .

[7]  P. Zoller,et al.  Many-particle entanglement with Bose–Einstein condensates , 2000, Nature.

[8]  Ueda,et al.  Squeezed spin states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[9]  U. Marzolino,et al.  Sub-shot-noise quantum metrology with entangled identical particles , 2010, 1001.3313.

[10]  M. Oberthaler,et al.  Nonlinear atom interferometer surpasses classical precision limit , 2010, Nature.

[11]  H M Wiseman,et al.  Entanglement of indistinguishable particles shared between two parties. , 2003, Physical review letters.

[12]  Lorenza Viola,et al.  A Generalization of Entanglement to Convex Operational Theories: Entanglement Relative to a Subspace of Observables , 2005 .

[13]  I. Bloch Ultracold quantum gases in optical lattices , 2005 .

[14]  Lorenza Viola,et al.  A subsystem-independent generalization of entanglement. , 2004, Physical review letters.

[15]  C. Gardiner,et al.  Cold Bosonic Atoms in Optical Lattices , 1998, cond-mat/9805329.

[16]  H. Narnhofer The role of transposition and CPT operation for entanglement , 2003 .

[17]  Michael M. Wolf,et al.  Entanglement in fermionic systems , 2007, 0705.1103.

[18]  J. Ignacio Cirac,et al.  Quantum entanglement theory in the presence of superselection rules (15 pages) , 2004 .

[19]  Hans J. Briegel,et al.  Spin squeezing and entanglement , 2008, 0806.1048.

[20]  P. Zanardi Quantum entanglement in fermionic lattices , 2002 .

[21]  J I Cirac,et al.  Spin squeezing inequalities and entanglement of N qubit states. , 2005, Physical review letters.

[22]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[23]  Gerard J. Milburn,et al.  Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential , 1997 .

[24]  Entanglement of two-mode Bose-Einstein condensates , 2002, quant-ph/0209122.

[25]  Wineland,et al.  Squeezed atomic states and projection noise in spectroscopy. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[26]  Cirac,et al.  Inseparability criterion for continuous variable systems , 1999, Physical review letters.

[27]  G. Milburn,et al.  Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.

[28]  V. Vedral,et al.  Entanglement in many-body systems , 2007, quant-ph/0703044.

[29]  M. Oberthaler,et al.  Squeezing and entanglement in a Bose–Einstein condensate , 2008, Nature.

[30]  M. Lewenstein,et al.  Quantum Correlations in Systems of Indistinguishable Particles , 2002, quant-ph/0203060.

[31]  Mark R. Dowling,et al.  Entanglement of indistinguishable particles in condensed-matter physics (12 pages) , 2006 .