Induced gamma-band responses in the human EEG are related to attentional information processing

Synchronized neural activity in the frequency range above 20 Hz, the gamma-band, has been proposed as a signature of temporal feature binding. Here we suggest that selective attention facilitates synchronization of neural activity. Selective attention can be guided by bottom-up, stimulus driven, or top-down task-driven processes. Both processes will cause that stimuli are processed preferentially. While bottom-up processes might facilitate synchronization of neurons due to the salience of the stimulus, top-down processes may bias information selection by facilitating synchronization of neurons coding a certain location in space and/or of neurons related to the processing of certain features. Animal as well as human EEG studies support the notion of a link between induced gamma-band responses and attentive, sensory stimulus processing.

[1]  W. Singer,et al.  Stimulus‐Dependent Neuronal Oscillations in Cat Visual Cortex: Inter‐Columnar Interaction as Determined by Cross‐Correlation Analysis , 1990, The European journal of neuroscience.

[2]  J. Pernier,et al.  Induced gamma-band activity during the delay of a visual short-term memory task in humans. , 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  Gordon H. Bower,et al.  Perceptual groups as coding units in immediate memory , 1972 .

[4]  A. Treisman Visual Attention and the Perception of Features and Objects , 1994 .

[5]  B. Feige,et al.  Oscillatory brain activity during a motor task. , 1993, Neuroreport.

[6]  J. Pernier,et al.  Gamma‐range Activity Evoked by Coherent Visual Stimuli in Humans , 1995, The European journal of neuroscience.

[7]  M. Posner,et al.  Attention and the detection of signals. , 1980, Journal of experimental psychology.

[8]  Matthias M. Müller,et al.  Selective visual-spatial attention alters induced gamma band responses in the human EEG , 1999, Clinical Neurophysiology.

[9]  Matthias M. Müller,et al.  Visually induced gamma‐band responses to coherent and incoherent motion: a replication study , 1997, Neuroreport.

[10]  S. Hillyard Electrical and magnetic brain recordings: contributions to cognitive neuroscience , 1993, Current Opinion in Neurobiology.

[11]  S. Tipper,et al.  The medium of attention: Location-based, object-centered, or scene-based? , 1998 .

[12]  W. Singer,et al.  Visuomotor integration is associated with zero time-lag synchronization among cortical areas , 1997, Nature.

[13]  M. Posner,et al.  The attention system of the human brain. , 1990, Annual review of neuroscience.

[14]  J. Cacioppo,et al.  Principles of psychophysiology : physical, social, and inferential elements , 1990 .

[15]  K. Reinikainen,et al.  Selective attention enhances the auditory 40-Hz transient response in humans , 1993, Nature.

[16]  M. Corbetta,et al.  A PET study of visuospatial attention , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  M. Corbetta,et al.  Superior Parietal Cortex Activation During Spatial Attention Shifts and Visual Feature Conjunction , 1995, Science.

[18]  T. Elbert,et al.  Visual stimulation alters local 40-Hz responses in humans: an EEG-study , 1995, Neuroscience Letters.

[19]  R. Eckhorn,et al.  High frequency (60-90 Hz) oscillations in primary visual cortex of awake monkey. , 1993, Neuroreport.

[20]  J. Pernier,et al.  Oscillatory γ-Band (30–70 Hz) Activity Induced by a Visual Search Task in Humans , 1997, The Journal of Neuroscience.

[21]  W. Singer,et al.  Neuronal assemblies: necessity, signature and detectability , 1997, Trends in Cognitive Sciences.

[22]  W. Singer,et al.  Synchronization of oscillatory neuronal responses in cat striate cortex: Temporal properties , 1992, Visual Neuroscience.

[23]  J. Pernier,et al.  Oscillatory gamma-band (30-70 Hz) activity induced by a visual search task in humans. , 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  J. Desmedt,et al.  Transient phase-locking of 40 Hz electrical oscillations in prefrontal and parietal human cortex reflects the process of conscious somatic perception , 1994, Neuroscience Letters.

[25]  F. Varela,et al.  Perception's shadow: long-distance synchronization of human brain activity , 1999, Nature.

[26]  Leslie G. Ungerleider,et al.  Mechanisms of visual attention in the human cortex. , 2000, Annual review of neuroscience.

[27]  R. Desimone Visual attention mediated by biased competition in extrastriate visual cortex. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[28]  S. Hillyard,et al.  Selective attention to the color and direction of moving stimuli: Electrophysiological correlates of hierarchical feature selection , 1996, Perception & psychophysics.

[29]  E. Marg A VISION OF THE BRAIN , 1994 .

[30]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[31]  C W SEM-JACOBSEN,et al.  Electroencephalographic rhythms from the depths of the parietal, occipital and temporal lobes in man. , 1956, Electroencephalography and clinical neurophysiology.

[32]  O. Tzeng,et al.  Cerebral asymmetry in visual attention , 1990, Brain and Cognition.

[33]  C. Herrmann,et al.  Gamma responses and ERPs in a visual classification task , 1999, Clinical Neurophysiology.

[34]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[35]  W. Singer,et al.  Precisely Synchronized Oscillatory Firing Patterns Require Electroencephalographic Activation , 1999, The Journal of Neuroscience.

[36]  Georges Ungar,et al.  Molecular mechanisms in memory and learning , 1970 .

[37]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[38]  P. Milner A model for visual shape recognition. , 1974, Psychological review.

[39]  Matthias M. Müller,et al.  Modulation of induced gamma band activity in the human EEG by attention and visual information processing. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[40]  T. Bussey High-frequency brain activity : perception or active memory ? , 1999 .

[41]  Matthias M. Müller,et al.  Human Gamma Band Activity and Perception of a Gestalt , 1999, The Journal of Neuroscience.

[42]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[43]  Leslie G. Ungerleider Functional Brain Imaging Studies of Cortical Mechanisms for Memory , 1995, Science.

[44]  D. E. Sheer,et al.  Sensory and Cognitive 40-Hz Event-Related Potentials: Behavioral Correlates, Brain Function, and Clinical Application , 1989 .

[45]  A Treisman,et al.  Feature analysis in early vision: evidence from search asymmetries. , 1988, Psychological review.

[46]  W. Singer,et al.  Role of Reticular Activation in the Modulation of Intracortical Synchronization , 1996, Science.

[47]  A. J. Fridlund,et al.  The Skeletomotor System , 1990 .

[48]  R Hübner,et al.  Perceiving spatially inseparable objects: evidence for feature-based object selection not mediated by location. , 1999, Journal of experimental psychology. Human perception and performance.

[49]  M. Posner,et al.  Attentional networks , 1994, Trends in Neurosciences.

[50]  Catherine Tallon-Baudry,et al.  Induced γ-Band Activity during the Delay of a Visual Short-Term Memory Task in Humans , 1998, The Journal of Neuroscience.

[51]  O Bertrand,et al.  Combined EEG and MEG recordings of visual 40 Hz responses to illusory triangles in human , 1997, Neuroreport.

[52]  A. Dale,et al.  New images from human visual cortex , 1996, Trends in Neurosciences.

[53]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[54]  [Visually-induced gamma band responses in human EEG- expression of cortical stimulus representation?]. , 1997, Zeitschrift fur experimentelle Psychologie : Organ der Deutschen Gesellschaft fur Psychologie.

[55]  Matthias M. Müller Oscillatory cortical activities in the human brain , 1997 .

[56]  Friedemann Pulverm Uuml,et al.  Words in the brain's language , 1999 .

[57]  E. Fetz,et al.  Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[58]  A. Baddeley,et al.  Attention : selection, awareness, and control : a tribute to Donald Broadbent , 1996 .

[59]  W. Singer,et al.  Synchronization of Visual Responses between the Cortex, Lateral Geniculate Nucleus, and Retina in the Anesthetized Cat , 1998, The Journal of Neuroscience.

[60]  J. Duncan Selective attention and the organization of visual information , 1984 .

[61]  Reinhard Eckhorn,et al.  Feature Linking via Synchronization among Distributed Assemblies: Simulations of Results from Cat Visual Cortex , 1990, Neural Computation.

[62]  D. Sheer,et al.  Effect of problem solving on right and left hemisphere 40 hertz EEG activity. , 1982, Psychophysiology.

[63]  C Braun,et al.  Gamma-band MEG activity to coherent motion depends on task-driven attention. , 1999, Neuroreport.

[64]  Eberhard E. Fetz,et al.  Synchronous Oscillations in Sensorimotor Cortex of Awake Monkeys and Humans , 1994 .

[65]  W. Singer,et al.  Stimulus‐Dependent Neuronal Oscillations in Cat Visual Cortex: Receptive Field Properties and Feature Dependence , 1990, The European journal of neuroscience.

[66]  Leslie G. Ungerleider,et al.  ‘What’ and ‘where’ in the human brain , 1994, Current Opinion in Neurobiology.

[67]  A Treisman,et al.  Feature binding, attention and object perception. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[68]  S. Luck,et al.  Attention-Related Modulation of Sensory-Evoked Brain Activity in a Visual Search Task , 1993, Journal of Cognitive Neuroscience.

[69]  M. Gazzaniga,et al.  Combined spatial and temporal imaging of brain activity during visual selective attention in humans , 1994, Nature.

[70]  O. Bertrand,et al.  Oscillatory gamma activity in humans and its role in object representation , 1999, Trends in Cognitive Sciences.

[71]  J. Pernier,et al.  Stimulus Specificity of Phase-Locked and Non-Phase-Locked 40 Hz Visual Responses in Human , 1996, The Journal of Neuroscience.

[72]  D. Contreras,et al.  Synchronization of fast (30-40 Hz) spontaneous cortical rhythms during brain activation , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.