적응 일반형 예측제어 설계에 관한 연구
暂无分享,去创建一个
In this paper, an adaptive generalized predictive control(GPC) algorithm which minimizes a N-stage cost function is proposed. The resulting controller is based on GPC algorithm and can be used in unknown plant parameters as the parameters of one step ahead predictor are estimated by recursive least squares method. The estimated parameters are extended to G, P, and F matrix which contain the parameters of N step ahead predictors. And the minimization of cost function assuming no constraints on future controls results in the projected control increment vector. Hence this adaptive GPC algorithm can be used for either unknown system or varing system parameters, and it is also shown through simulations that the algorithm is robust to the variation of system parameters. This adaptive GPC scheme is shown to have the same stability properties as the deterministic GPC, and requires small amount of calculation compared to other adaptive algorithms which minimize N-stage cost function. Especially, in case that the maximum output horizon is 1, the proposed algorithm can be applicable to direct adaptive GPC.