Line directionality of orders

Some orders can be represented by translating convex figures in the plane. It is proved thatN-free and interval orders admit such representations with an unbounded number of directions. Weak orders, tree-like orders and two-dimensional orders of height one are shown to be two- directional. In all cases line segments can be used as convex sets.

[1]  Jorge Urrutia,et al.  Representing orders on the plane by translating points and lines , 1990, Discret. Appl. Math..

[2]  Andrzej Pelc,et al.  Drawing orders with few slopes , 1990, Discret. Math..

[3]  C. R. Platt,et al.  Planar lattices and planar graphs , 1976, J. Comb. Theory, Ser. B.

[4]  Godfried T. Toussaint,et al.  Movable Separability of Sets , 1985 .

[5]  Thomas Ottmann,et al.  On translating a set of line segments , 1983, Comput. Vis. Graph. Image Process..

[6]  Leonidas J. Guibas,et al.  On translating a set of rectangles , 1980, STOC '80.

[7]  Jaroslav Nešetřil,et al.  Chromatic number of Hasse diagrams, eyebrows and dimension , 1991 .

[8]  I. Rival Graphical Data Structures for Ordered Sets , 1989 .

[9]  R. J. Dawson On Removing a Ball Without Disturbing the Others , 1984 .

[10]  George Steiner,et al.  A linear time algorithm to find the jump number of 2-dimensional bipartite partial orders , 1987 .

[11]  Andrzej Pelc,et al.  Motion Planning, Two-Directional Point Representations, and Ordered Sets , 1991, SIAM J. Discret. Math..

[12]  Peter C. Fishburn,et al.  Partial orders of dimension 2 , 1972, Networks.

[13]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[14]  Stefan Felsner,et al.  Constructing Colorings for Diagrams , 1994, Discret. Appl. Math..

[15]  J. Urrutia,et al.  Representing orders on the plane by translating convex figures , 1988 .

[16]  Jeremy P. Spinrad,et al.  Bipartite permutation graphs , 1987, Discret. Appl. Math..

[17]  William T. Trotter,et al.  The dimension of planar posets , 1977, J. Comb. Theory, Ser. B.