MOLECULAR ANALYSIS OF ORIGINAL ANTIGENIC SIN

[1]  T. Manser,et al.  Evolution of antibody structure during the immune response. The differentiative potential of a single B lymphocyte , 1989, The Journal of experimental medicine.

[2]  D. Pisetsky,et al.  Structure and function of anti-DNA autoantibodies derived from a single autoimmune mouse. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[3]  T. Manser,et al.  Isolation of hybridomas expressing a specific heavy chain variable region gene segment by using a screening technique that detects mRNA sequences in whole cell lysates. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[4]  C. Milstein,et al.  Anti-oxazolone hybridomas and the structure of the oxazolone idiotype. , 1983, Journal of immunology.

[5]  R. Webster,et al.  DISQUISITIONS ON ORIGINAL ANTIGENIC SIN : II. PROOF IN LOWER CREATURES , 1966 .

[6]  A. Rao,et al.  Activation specificity of arsonate-reactive T cell clones. Structural requirements for hapten recognition and comparison with monoclonal antibodies , 1984, The Journal of experimental medicine.

[7]  A. Nisonoff,et al.  Relative combining affinities of anti-p-azophenylarsonate antibodies bearing a cross-reactive idiotype. , 1976, Immunochemistry.

[8]  G W Siskind,et al.  Cell selection by antigen in the immune response. , 1969, Advances in immunology.

[9]  G. Church,et al.  Multiplex DNA sequencing. , 1988, Science.

[10]  R. Perry,et al.  Rearrangement of immunoglobulin heavy chain genes during B-lymphocyte development as revealed by studies of mouse plasmacytoma cells. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[11]  J. D. Capra,et al.  Idiotypic analysis of polyclonal and monoclonal anti-p-azophenylarsonate antibodies of BALB/c mice expressing the major cross-reactive idiotype of the A/J strain. , 1985, Journal of immunology.

[12]  F. Alt,et al.  Joining of immunoglobulin heavy chain gene segments: implications from a chromosome with evidence of three D-JH fusions. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[13]  H. Eisen,et al.  Degeneracy in the secondary immune response: stimulation of antibody formation by cross-reacting antigens. , 1969, Israel journal of medical sciences.

[14]  T. Tokuhisa,et al.  Memory B cells at successive stages of differentiation. Affinity maturation and the role of IgD receptors , 1980, The Journal of experimental medicine.

[15]  L. Wysocki,et al.  Single germline VH and V kappa genes encode predominating antibody variable regions elicited in strain A mice by immunization with p- azophenylarsonate , 1987, The Journal of experimental medicine.

[16]  A. Bothwell,et al.  A limited number of B cell lineages generates the heterogeneity of a secondary immune response. , 1987, Journal of immunology.

[17]  T. Manser,et al.  Influence of the macromolecular form of a B cell epitope on the expression of antibody variable and constant region structure , 1987, The Journal of experimental medicine.

[18]  S. Cory,et al.  Deletions in the constant region locus can account for switches in immunoglobulin heavy chain expression , 1980, Nature.

[19]  A Cumano,et al.  Evolutionary and somatic selection of the antibody repertoire in the mouse. , 1987, Science.

[20]  J Berry,et al.  Somatic evolution of diversity among anti-phosphocholine antibodies induced with Proteus morganii. , 1987, Journal of immunology.

[21]  R. Parkhouse,et al.  Immunoglobulin M receptors on memory cells of immunoglobulin G antibody‐forming cell clones , 1976, European journal of immunology.

[22]  M. Hummel,et al.  Switch region content of hybridomas: the two spleen cell Igh loci tend to rearrange to the same isotype. , 1987, Journal of immunology.

[23]  B. Birshtein,et al.  Sites of switch recombination in IgG2b- and IgG2a-producing hybridomas. , 1988, Journal of immunology.

[24]  T. Honjo,et al.  Organization of immunoglobulin heavy chain genes and allelic deletion model. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Klaus Rajewsky,et al.  Analysis of somatic mutation and class switching in naive and memory B cells generating adoptive primary and secondary responses , 1987, Cell.

[26]  L. Herzenberg,et al.  Demonstration that IgG memory is carried by IgG‐bearing cells , 1976, European journal of immunology.

[27]  M. Siekevitz,et al.  The genetic basis of antibody production: A single heavy chain variable region gene encodes all molecules bearing the dominant anti‐arsonate idiotype in the strain A mouse , 1983, European journal of immunology.

[28]  Hitoshi Sakano,et al.  Two types of somatic recombination are necessary for the generation of complete immunoglobulin heavy-chain genes , 1980, Nature.

[29]  I. Maclennan,et al.  Memory B cells in T cell‐dependent antibody responses colonize the splenic marginal zones , 1988, European journal of immunology.

[30]  I. Sanz,et al.  The molecular genetics of the arsonate idiotypic system of A/J mice. , 1988, Advances in immunology.

[31]  C. Milstein,et al.  Activation of memory and virgin B cell clones in hyperimmune animals , 1987, European journal of immunology.

[32]  L. Staudt,et al.  Inter- and intraclonal diversity in the antibody response to influenza hemagglutinin , 1985, The Journal of experimental medicine.