Pseudolite Applications in Positioning and Navigation: Progress and Problems

Global navigation satellite systems have been revolutionising surveying, geodesy, navigation and other position/location sensitive disciplines. However, there are two intrinsic shortcomings in such satellite-based positioning systems: signal attenuation and dependence on the geometric distribution of the satellites. Consequently, the system performance can decrease significantly under some harsh observing conditions. To tackle this problem, some new concepts of positioning with the use of pseudo-satellites have been developed and tested. Pseudo-satellites, also called pseudolites, are ground-based transmitters that can be easily installed wherever they are needed. They therefore offer great flexibility in positioning and navigation applications. Although some initial experimental results are encouraging, there are still some challenging issues that need to be addressed. This paper reviews the historical pseudolite hardware developments and recent progress in pseudolite-based positioning, and discusses the current technical issues.

[1]  G. Lachapelle,et al.  PSEUDOLITE AUGMENTATION FOR OTF AMBIGUITY RESOLUTION IN SHIPBORNE MODE , 1998 .

[2]  Bernd Eissfeller,et al.  Practical Investigations on DGPS For Aircraft Precision Approaches Augmented by Pseudolite Carrier Phase Tracking , 1997 .

[3]  Martin Weiser Development of a Carrier and C/A-Code Based Pseudolite System , 1998 .

[4]  Pat Fenton,et al.  HAPPI - a High Accuracy Pseudolite/GPS Positioning Integration , 1996 .

[5]  Jinling Wang,et al.  An approach to GLONASS ambiguity resolution , 2000 .

[6]  Yilin Zhao,et al.  Mobile phone location determination and its impact on intelligent transportation systems , 2000, IEEE Trans. Intell. Transp. Syst..

[7]  Alison K. Brown A GPS Precision Approach and Landing System , 1992 .

[8]  Benjamin Peterson,et al.  Indoor Geolocation System Operational Test Results , 2000 .

[9]  Randal C. Galijan,et al.  A Suggested Approach for Augmenting GNSS Category III Approaches and Landings: The GPS/GLONASS and GLONASS Pseudolite System , 1993 .

[10]  C. Rizos,et al.  The Performance of a Pseudolite-Based Positioning System for Deformation Monitoring , 2002 .

[11]  Stephan Theil Autonomous Onboard Orbit and Attitude Control of Geostationary Satellites Using Pseudolites , 1998 .

[12]  Charles K. Toth,et al.  GPS/INS/Pseudolite Integration: Concepts, Simulation and Testing , 2001 .

[13]  Integration of stratospheric platforms within the GNSS2 system , 2000 .

[14]  Bradford W. Parkinson,et al.  Global positioning system : theory and applications , 1996 .

[15]  Meir Pachter,et al.  GEOMETRY OPTIMIZATION OF A GPS-BASED NAVIGATION REFERENCE SYSTEM , 1997 .

[16]  Jeffrey L. Tuohino,et al.  Military Pseudolite Flight Test Results , 2000 .

[17]  Rudolph M. Kalafus,et al.  Special Committee 104 Recommendations for Differential GPS Service , 1986 .

[18]  Sandra Verhagen Ambiguity Resolution and Success Rates with an Integrated GNSS - Pseudolite Positioning System , 2001 .

[19]  H. S. Cobb,et al.  GPS Pseudolites : Theory, Design, and Applications , 1997 .

[20]  William R. Michalson,et al.  An Alternative Approach to Multipath and Near-Far Problem for Indoor Geolocation Systems , 2001 .

[21]  Chris Rizos,et al.  Pseudo-Satellite Applications in Deformation Monitoring , 2002, GPS Solutions.

[22]  Chris Rizos,et al.  Kinematic Positioning with an Integrated GPS / Pseudolite / INS , 2001 .

[23]  David J. Goodman,et al.  Personal Communications , 1994, Mobile Communications.

[24]  T. Holden,et al.  Pseudolite Augmented DGPS for Land Applications , 1997 .

[25]  Chris Bartone,et al.  Flight test results of an integrated wideband airport pseudolite for the local Area Augmentation System , 2000 .

[26]  Kurt Ronald Zimmerman,et al.  Experiments in the use of the global positioning system for space vehicle rendezvous , 1996 .

[27]  Bradford W. Parkinson,et al.  The application of NAVSTAR differential GPS in the civilian community , 1982 .

[28]  Chris Rizos,et al.  A Navigation / Positioning Service Based on Pseudolites Installed on Stratospheric Airships , 2001 .

[29]  E. Glenn Lightsey,et al.  Ground Experimentation of a Pseudolite-Only Method for the Relative Positioning of Two Spacecraft , 2001 .

[30]  J. David Powell,et al.  GPS Pseudolite Transceivers and their Applications , 1999 .

[31]  Bradford W. Parkinson,et al.  INTEGRITY MONITORING FOR PRECISION APPROACH USING KINEMATIC GPS AND A GROUND-BASED PSEUDOLITE , 1994 .

[32]  Jonathan P. How,et al.  Onboard Pseudolite Augmentation System for Relative Navigation , 1999 .

[33]  Chris Rizos,et al.  APPLICATIONS OF PSEUDOLITES IN DEFORMATION MONITORING SYSTEMS , 2001 .

[34]  Kaveh Pahlavan,et al.  Wideband radio propagation modeling for indoor geolocation applications , 1998 .

[35]  Bryant D. Elrod,et al.  Local DGPS With Pseudolite Augmentation and Implementation Considerations for LAAS , 1996 .

[36]  Bradford W. Parkinson,et al.  Development of Indoor Navigation System using Asynchronous Pseudolites , 2000 .

[37]  Toshiaki Tsujii,et al.  Pseudolite applications in positioning and navigation: Modelling and geometric analysis , 2001 .

[38]  Bradford W. Parkinson,et al.  Optimal Locations of Pseudolites for Differential GPS , 1986 .

[39]  M. Elizabeth Cannon,et al.  Pseudolite-Based Inverted GPS Concept for Local Area Positioning , 1999 .

[40]  Gérard Lachapelle,et al.  Development and Testing of a Mobile Pseudolite Concept for Precise Positioning , 1995 .

[41]  Edward A. LeMaster,et al.  Mars Exploration Using Self-Calibrating Pseudolite Arrays , 1998 .

[42]  C. Rizos,et al.  INVERTED PSEUDOLITE POSITIONING AND ITS APPLICATIONS , 2001 .

[43]  Penina Axelrad,et al.  Mitigation of the Near-Far Problem by Successive Interference Cancellation , 2001 .

[44]  T.S. Rappaport,et al.  Radio-wave propagation for emerging wireless personal-communication systems , 1994, IEEE Antennas and Propagation Magazine.

[45]  Bernd Eissfeller,et al.  Pseudolite Signal Creeping On Conducting Surfaces , 2001 .

[46]  Bradford W. Parkinson,et al.  The Use of Pseudo‐Satellites for Improving GPS Performance , 1984 .

[47]  Edward A. LeMaster Self-calibrating pseudolite arrays : theory and experiment , 2002 .

[48]  Chris Rizos,et al.  成層圏プラットフォームを用いた擬似 GPS 衛星による航法測位サービスについて , 2002 .

[49]  Clark E. Cohen,et al.  Multi-Frequency Pseudolites for Instantaneous Carrier Ambiguity Resolution , 2000 .

[50]  William R. Michalson,et al.  Assessing the Accuracy of Underground Positioning Using Pseudolites , 2000 .

[51]  Stefan Söderholm,et al.  Indoor Navigation Using A GPS Receiver , 2001 .

[52]  Chris Rizos,et al.  GPS and GLONASS Integration: Modeling and Ambiguity Resolution Issues , 2001, GPS Solutions.

[53]  Chris Rizos,et al.  INVERTED PSEUDOLITE POSITIONING AND SOME APPLICATIONS , 2002 .

[54]  Michael Moore,et al.  Pseudo-satellites Integration for Precise Positioning , 2001 .

[55]  Thomas A. Stansell RTCM SC‐104 Recommended Pseudolite Signal Specification , 1986 .