Faster PET reconstruction with a stochastic primal-dual hybrid gradient method

Image reconstruction in positron emission tomography (PET) is computationally challenging due to Poisson noise, constraints and potentially non-smooth priors-let alone the sheer size of the problem. An algorithm that can cope well with the first three of the aforementioned challenges is the primal-dual hybrid gradient algorithm (PDHG) studied by Chambolle and Pock in 2011. However, PDHG updates all variables in parallel and is therefore computationally demanding on the large problem sizes encountered with modern PET scanners where the number of dual variables easily exceeds 100 million. In this work, we numerically study the usage of SPDHG-a stochastic extension of PDHG-but is still guaranteed to converge to a solution of the deterministic optimization problem with similar rates as PDHG. Numerical results on a clinical data set show that by introducing randomization into PDHG, similar results as the deterministic algorithm can be achieved using only around 10 % of operator evaluations. Thus, making significant progress towards the feasibility of sophisticated mathematical models in a clinical setting.

[1]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[2]  S. Kaczmarz Approximate solution of systems of linear equations , 1993 .

[3]  H. Malcolm Hudson,et al.  Accelerated image reconstruction using ordered subsets of projection data , 1994, IEEE Trans. Medical Imaging.

[4]  J. M. Ollinger,et al.  Positron Emission Tomography , 2018, Handbook of Small Animal Imaging.

[5]  Paul Tseng,et al.  An Incremental Gradient(-Projection) Method with Momentum Term and Adaptive Stepsize Rule , 1998, SIAM J. Optim..

[6]  Anand Rangarajan,et al.  Provably convergent OSEM-like reconstruction algorithm for emission tomography , 2002, SPIE Medical Imaging.

[7]  Jeffrey A. Fessler,et al.  Globally convergent image reconstruction for emission tomography using relaxed ordered subsets algorithms , 2003, IEEE Transactions on Medical Imaging.

[8]  P. Valk,et al.  Positon emission tomography. Basic sciences , 2006 .

[9]  Alfred O. Hero,et al.  A Convergent Incremental Gradient Method with a Constant Step Size , 2007, SIAM J. Optim..

[10]  R. Vershynin,et al.  A Randomized Kaczmarz Algorithm with Exponential Convergence , 2007, math/0702226.

[11]  Daniel Cremers,et al.  An algorithm for minimizing the Mumford-Shah functional , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[12]  Gabor T. Herman Algebraic Reconstruction Techniques , 2009 .

[13]  Y. Censor,et al.  A Note on the Behavior of the Randomized Kaczmarz Algorithm of Strohmer and Vershynin , 2009, The journal of fourier analysis and applications.

[14]  Tony F. Chan,et al.  A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science , 2010, SIAM J. Imaging Sci..

[15]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[16]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[17]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[18]  Dimitri P. Bertsekas,et al.  Incremental proximal methods for large scale convex optimization , 2011, Math. Program..

[19]  Alexander G. Gray,et al.  Stochastic Alternating Direction Method of Multipliers , 2013, ICML.

[20]  Stanley Osher,et al.  A Guide to the TV Zoo , 2013 .

[21]  Leon Wenliang Zhong,et al.  Fast Stochastic Alternating Direction Method of Multipliers , 2013, ICML.

[22]  Sébastien Ourselin,et al.  Global image registration using a symmetric block-matching approach , 2014, Journal of medical imaging.

[23]  Guanghui Lan,et al.  Randomized Methods for Saddle Point Computation , 2014 .

[24]  J. Pesquet,et al.  A Class of Randomized Primal-Dual Algorithms for Distributed Optimization , 2014, 1406.6404.

[25]  Patrick J La Rivière,et al.  Joint reconstruction of multi-channel, spectral CT data via constrained total nuclear variation minimization , 2014, Physics in medicine and biology.

[26]  Ninon Burgos,et al.  Multi-contrast attenuation map synthesis for PET/MR scanners: assessment on FDG and Florbetapir PET tracers , 2015, European Journal of Nuclear Medicine and Molecular Imaging.

[27]  Peter Richtárik,et al.  Stochastic Dual Ascent for Solving Linear Systems , 2015, ArXiv.

[28]  Zhanxing Zhu,et al.  Adaptive Stochastic Primal-Dual Coordinate Descent for Separable Saddle Point Problems , 2015, ECML/PKDD.

[29]  Kristian Bredies,et al.  A TGV-Based Framework for Variational Image Decompression, Zooming, and Reconstruction. Part I: Analytics , 2015, SIAM J. Imaging Sci..

[30]  Yuchen Zhang,et al.  Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization , 2014, ICML.

[31]  Xavier Bresson,et al.  Adaptive Regularization With the Structure Tensor , 2015, IEEE Transactions on Image Processing.

[32]  Jeffrey A. Fessler,et al.  Fast X-Ray CT Image Reconstruction Using a Linearized Augmented Lagrangian Method With Ordered Subsets , 2014, IEEE Transactions on Medical Imaging.

[33]  Peter Richtárik,et al.  Quartz: Randomized Dual Coordinate Ascent with Arbitrary Sampling , 2015, NIPS.

[34]  Kristian Bredies,et al.  A TGV-Based Framework for Variational Image Decompression, Zooming, and Reconstruction. Part I: Analytics , 2015, SIAM J. Imaging Sci..

[35]  Pawel Markiewicz,et al.  PET Reconstruction With an Anatomical MRI Prior Using Parallel Level Sets , 2016, IEEE Transactions on Medical Imaging.

[36]  Rafael M. Oliveira,et al.  String-averaging incremental subgradients for constrained convex optimization with applications to reconstruction of tomographic images , 2016, 1610.05823.

[37]  Antonin Chambolle,et al.  An introduction to continuous optimization for imaging , 2016, Acta Numerica.

[38]  Matthias Joachim Ehrhardt,et al.  Uniform acquisition modelling across PET imaging systems: Unified scatter modelling , 2016, 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD).

[39]  Francis R. Bach,et al.  Stochastic Variance Reduction Methods for Saddle-Point Problems , 2016, NIPS.

[40]  Marta M. Betcke,et al.  Multicontrast MRI Reconstruction with Structure-Guided Total Variation , 2015, SIAM J. Imaging Sci..

[41]  J. Fessler,et al.  Relaxed Linearized Algorithms for Faster X-Ray CT Image Reconstruction. , 2016, IEEE transactions on medical imaging.

[42]  Ming Yan,et al.  Coordinate Friendly Structures, Algorithms and Applications , 2016, ArXiv.

[43]  B F Hutton,et al.  Rapid processing of PET list-mode data for efficient uncertainty estimation and data analysis. , 2016, Physics in medicine and biology.

[44]  Tuomo Valkonen,et al.  Block-proximal methods with spatially adapted acceleration , 2016, ETNA - Electronic Transactions on Numerical Analysis.

[45]  Peter Richtárik,et al.  Parallel coordinate descent methods for big data optimization , 2012, Mathematical Programming.

[46]  Mark W. Schmidt,et al.  Minimizing finite sums with the stochastic average gradient , 2013, Mathematical Programming.

[47]  Kristian Bredies,et al.  Joint MR-PET Reconstruction Using a Multi-Channel Image Regularizer , 2017, IEEE Transactions on Medical Imaging.

[48]  David Atkinson,et al.  NiftyPET: a High-throughput Software Platform for High Quantitative Accuracy and Precision PET Imaging and Analysis , 2017, Neuroinformatics.

[49]  Nick C Fox,et al.  Study protocol: Insight 46 – a neuroscience sub-study of the MRC National Survey of Health and Development , 2017, BMC Neurology.

[50]  Antonin Chambolle,et al.  Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Applications , 2017, SIAM J. Optim..

[51]  Yangyang Xu,et al.  Randomized Primal–Dual Proximal Block Coordinate Updates , 2016, Journal of the Operations Research Society of China.

[52]  M. Burger,et al.  Joint reconstruction via coupled Bregman iterations with applications to PET-MR imaging , 2017, 1704.06073.

[53]  Rasmus Dalgas Kongskov,et al.  Directional total generalized variation regularization , 2017, BIT Numerical Mathematics.

[54]  Pascal Bianchi,et al.  A Coordinate-Descent Primal-Dual Algorithm with Large Step Size and Possibly Nonseparable Functions , 2015, SIAM J. Optim..