Point Processes and Some Related Processes

Publisher Summary This chapter focuses on the point processes and some related processes. This chapter reviews of the theory of point processes and some related stochastic processes, with a choice of topics that is undoubtedly somewhat personal. This chapter indicates some of the rich variety of point process and other stochastic process models that can be built from more basic point processes, and consider aspects of statistical inference for point process data. A unifying tool throughout much of the presentation is provided by the probability generating functional, which stands in relation to a point process, as does the probability enerating function to a nonnegative integer-valued random variable.

[1]  P. Lewis Recent results in the statistical analysis of univariate point processes , 1971 .

[2]  A. Baddeley Spatial sampling and censoring , 2019, Stochastic Geometry.

[3]  Kurt Nawrotzki,et al.  Eine Monotonieeigenschaft zufälliger Punktfolgen , 1962 .

[4]  A. Baddeley,et al.  Nearest-Neighbour Markov Point Processes and Random Sets , 1989 .

[5]  P. Franken,et al.  Stationary Stochastic Models. , 1992 .

[6]  Bernard W. Silverman,et al.  A class of two-type point processes , 1981 .

[7]  David R. Brillinger,et al.  Time series, point processes, and hybrids* , 1994 .

[8]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[9]  Niels Keiding,et al.  Statistical Models Based on Counting Processes , 1993 .

[10]  Bernard W. Silverman,et al.  Methods for Analysing Spatial Processes of Several Types of Points , 1982 .

[11]  D. Kendall Some Recent Work and Further Problems in the Theory of Queues , 1964 .

[12]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[13]  Odd O. Aalen,et al.  Counting Processes and Dynamic Modelling , 1997 .

[14]  T. Riden,et al.  Consistent and Asymptotically Normal Parameter Estimates for Markov Modulated Poisson Processes , 1995 .

[15]  E. CastroPeter,et al.  Infinitely Divisible Point Processes , 1982 .

[16]  Rolf-Dieter Reiss,et al.  A Course on Point Processes , 1992 .

[17]  Dénes König,et al.  Verallgemeinerungen der Erlangschen und Engsetschen Formeln : Eine Methode in der Bedienungstheorie , 1967 .

[18]  Peter J. Diggle,et al.  Statistical analysis of spatial point patterns , 1983 .

[19]  G. Shedler,et al.  Simulation of Nonhomogeneous Poisson Processes by Thinning , 1979 .

[20]  D. J. Strauss A model for clustering , 1975 .

[21]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[22]  I. Molchanov Statistics of the Boolean Model for Practitioners and Mathematicians , 1997 .

[23]  Klaus Krickeberg,et al.  Probability Theory: Basic Concepts · Limit Theorems Random Processes , 1969 .

[24]  N. Hjort,et al.  Topics in Spatial Statistics , 1992 .

[25]  H. Thorisson On time- and cycle-stationarity , 1995 .

[26]  Aleksandr I︠A︡kovlevich Khinchin,et al.  Mathematical methods in the theory of queueing , 1969 .

[27]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[28]  R. Shorrock Extremal processes and random measures , 1975, Journal of Applied Probability.

[29]  Alan F. Karr,et al.  Point Processes and Their Statistical Inference , 1991 .

[30]  M. Westcott The probability generating functional , 1972, Journal of the Australian Mathematical Society.

[31]  B. Matérn Spatial variation : Stochastic models and their application to some problems in forest surveys and other sampling investigations , 1960 .

[32]  J. L. Jensen,et al.  Pseudolikelihood for Exponential Family Models of Spatial Point Processes , 1991 .

[33]  A. Baddeley,et al.  Practical Maximum Pseudolikelihood for Spatial Point Patterns , 1998, Advances in Applied Probability.

[34]  F. Baccelli,et al.  Palm Probabilities and Stationary Queues , 1987 .

[35]  J. Grandell Doubly stochastic Poisson processes , 1976 .

[36]  V. Schmidt,et al.  Queues and Point Processes , 1983 .

[37]  Y. Kutoyants,et al.  Statistical Inference for Spatial Poisson Processes , 1998 .

[38]  David R. Cox,et al.  The statistical analysis of series of events , 1966 .

[39]  J. F. C. Kingman,et al.  Information and Exponential Families in Statistical Theory , 1980 .

[40]  R. K. Milne Infinitely divisible bivariate Poisson processes , 1974, Advances in Applied Probability.

[41]  Peter J. Diggle,et al.  Bivariate Cox Processes: Some Models for Bivariate Spatial Point Patterns , 1983 .

[42]  R. Milne Simple Proofs of some Theorems on Point Processes , 1971 .

[43]  H. Omre,et al.  Topics in spatial statistics. Discussion and comments , 1994 .

[44]  O. Macchi The coincidence approach to stochastic point processes , 1975, Advances in Applied Probability.

[45]  A. Särkkä Pseudo-likelihood approach for gibbs point processes in connection with field observations , 1995 .

[46]  T. E. Harris,et al.  The Theory of Branching Processes. , 1963 .

[47]  Malcolm R Leadbetter,et al.  Stationary and Related Stochastic Processes: Sample Function Properties and Their Applications , 1967 .

[48]  Johannes Kerstan,et al.  Unbegrenzt teilbare Punktprozesse , 1974 .

[49]  B. Ripley,et al.  Markov Point Processes , 1977 .

[50]  Donald L. Snyder,et al.  Random Point Processes in Time and Space , 1991 .

[51]  M. Westcott,et al.  Further results for Gauss-Poisson processes , 1972, Advances in Applied Probability.

[52]  A. Baddeley,et al.  A non-parametric measure of spatial interaction in point patterns , 1996, Advances in Applied Probability.

[53]  B. Ripley Statistical inference for spatial processes , 1990 .

[54]  Meyer Dwass,et al.  On Infinitely Divisible Random Vectors , 1957 .

[55]  Ralph L. Disney,et al.  Traffic processes in queueing networks: a Markov renewal approach , 1987 .

[56]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[57]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[58]  A. Baddeley,et al.  Area-interaction point processes , 1993 .

[59]  Aila Särkkä,et al.  Parameter Estimation for Marked Gibbs Point Processes Through the Maximum Pseudo-likelihood Method , 1996 .

[60]  Peter J. Diggle,et al.  On parameter estimation and goodness-of-fit testing for spatial point patterns , 1979 .

[61]  Peter A. W. Lewis,et al.  Stochastic point processes : statistical analysis, theory, and applications , 1973 .

[62]  J. Hunter Renewal theory in two dimensions: asymptotic results , 1974, Advances in Applied Probability.

[63]  J. E. Moyal The general theory of stochastic population processes , 1962 .

[64]  Madan L. Puri,et al.  Stochastic Processes and Related Topics. , 1976 .

[65]  J. Grandell Mixed Poisson Processes , 1997 .

[66]  van Marie-Colette Lieshout,et al.  Indices of Dependence Between Types in Multivariate Point Patterns , 1999 .

[67]  L. Rogers,et al.  Diffusions, Markov processes, and martingales , 1979 .

[68]  P. Brémaud Point processes and queues, martingale dynamics , 1983 .

[69]  D. Brillinger Estimation of the Second-Order Intensities of a Bivariate Stationary Point Process , 1976 .

[70]  A. Rényi Remarks on the Poisson process , 1967 .

[71]  K. Sigman Stationary marked point processes : an intuitive approach , 1995 .

[72]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[73]  D. Stoyan,et al.  Fractals, random shapes and point fields : methods of geometrical statistics , 1996 .

[74]  Iosif Ilitch Gikhman,et al.  Introduction to the theory of random processes , 1969 .

[75]  Boris Gnedenko,et al.  Introduction to queueing theory , 1968 .

[76]  Jeffrey J. Hunter,et al.  Renewal theory in two dimensions: Basic results , 1974, Advances in Applied Probability.

[77]  Adrian Baddeley,et al.  A crash course in stochastic geometry , 2019, Stochastic Geometry.

[78]  R. Ambartzumian Factorization calculus and geometric probability , 1990 .

[79]  Robert C. Griffiths,et al.  A class of bivariate Poisson processes , 1978, Advances in Applied Probability.