Accepted for publication in ApJ Letters Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE HIGHLY UNUSUAL CHEMICAL COMPOSITION OF THE HERCULES DWARF SPHEROIDAL GALAXY 1

We report on the abundance analysis of two red giants in the faint Hercules dwarf spheroidal (dSph) galaxy. These stars show a remarkable deficiency in the neutron-capture elements, while the hydrostatic α-elements (O, Mg) are strongly enhanced. Our data indicate [Ba/Fe] and [Mg/Fe] abundance ratios of –2 and ~+0.8 dex, respectively, with essentially no detection of other n-capture elements. In contrast to the only other dSph star with similar abundance patterns, Dra 119, which has a very low metallicity at [Fe/H] = –2.95 dex, our objects, at [Fe/H] ~ –2.0 dex, are only moderately metal-poor. The measured ratio of hydrostatic/explosive α-elements indicates that high-mass (~35 M☉) Type II supernovae progenitors are the main, if not only, contributors to the enrichment of this galaxy. This suggests that star formation and chemical enrichment in the ultrafaint dSphs proceeds stochastically and inhomogeneously on small scales, or that the IMF was strongly skewed to high-mass stars. The neutron capture deficiencies and the [Co/Fe] and [Cr/Fe] abundance ratios in our stars are similar to those in the extremely low metallicity Galactic halo. This suggests that either our stars are composed mainly of the ejecta from the first, massive, Population III stars (but at moderately high [Fe/H]), or that SN ejecta in the Hercules galaxy were diluted with ~30 times less hydrogen than typical for extreme metal-poor stars.

[1]  Jeffrey L. Carlin,et al.  Exploring Halo Substructure with Giant Stars: The Dynamics and Metallicity of the Dwarf Spheroidal in Boötes , 2006, astro-ph/0606271.

[2]  J. S. Wright,et al.  Discovery of an "alpha" Element-Poor Halo Star in a Search for Very Low- Metallicity Disk Stars , 1997 .

[3]  G. Rieke,et al.  The interstellar extinction law from 1 to 13 microns. , 1985 .

[4]  J. Silk,et al.  The First Generation of Stars: First Steps toward Chemical Evolution of Galaxies , 1995, astro-ph/9508040.

[5]  Lars Hernquist,et al.  Protostar Formation in the Early Universe , 2008, Science.

[6]  L. Hebb,et al.  Discovery of an Unusual Dwarf Galaxy in the Outskirts of the Milky Way , 2007, astro-ph/0701154.

[7]  O. Paris,et al.  Subaru/HDS Abundances in Three Giant Stars in the Ursa Minor Dwarf Spheroidal Galaxy ∗ , 2004, astro-ph/0411332.

[8]  Gang Zhao,et al.  National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 , 2002 .

[9]  Glenn E. Miller,et al.  The Initial mass function and stellar birthrate in the solar neighborhood , 1979 .

[10]  Eva K. Grebel,et al.  Empirical color transformations between SDSS photometry and Other photometric systems. , 2005 .

[11]  M. Shetrone,et al.  Keck HIRES Abundances in the Dwarf Spheroidal Galaxy Draco , 1998 .

[12]  A. Koch,et al.  A NEW ABUNDANCE SCALE FOR THE GLOBULAR CLUSTER 47 Tuc , 2008, 0802.2103.

[13]  Gangzhao,et al.  Non-LTE Analysis of the Sodium Abundance of Metal-Poor Stars in the Galactic Disk and Halo , 2003 .

[14]  I. O. Astronomy,et al.  Star formation feedback and metal enrichment by Types Ia and II supernovae in dwarf spheroidal galaxies: the case of Draco , 2006, astro-ph/0602386.

[15]  Heidelberg,et al.  A Comprehensive Maximum Likelihood Analysis of the Structural Properties of Faint Milky Way Satellites , 2008, 0805.2945.

[16]  G. A. Rutledge,et al.  GALACTIC GLOBULAR CLUSTER METALLICITY SCALE FROM THE CA II TRIPLET II. RANKINGS, COMPARISONS, AND PUZZLES , 1997, astro-ph/9707068.

[17]  Y. Wadadekar,et al.  Submitted to ApJS Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SIXTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2022 .

[18]  S. Woosley,et al.  The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .

[19]  X. Hernández,et al.  Chemical consequences of low star formation rates: stochastically sampling the initial mass function , 2008, 0802.1203.

[20]  Subaru Telescope,et al.  A Curious Milky Way Satellite in Ursa Major , 2006, astro-ph/0606633.

[21]  A New Type of Extremely Metal-poor Star , 2007, astro-ph/0703341.

[22]  K. Institute,et al.  The chemical evolution of dwarf spheroidal galaxies: dissecting the inner regions and their stellar populations , 2008, 0803.0385.

[23]  Joshua D. Simon,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE KINEMATICS OF THE ULTRA-FAINT MILKY WAY SATELLITES: SOLVING THE MISSING SATELLITE PROBLEM , 2022 .

[24]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[25]  C. Sneden The nitrogen abundance of the very metal-poor star HD 122563. , 1973 .

[26]  B. Yanny,et al.  Cats and dogs, hair and a hero: A quintet of new milky way companions , 2006 .

[27]  R. G. Gratton,et al.  Abundances for globular cluster giants: I. homogeneous metallicities for 24 clusters , 1996, astro-ph/9607078.

[28]  Santiago,et al.  The exotic chemical composition of the Sagittarius dwarf Spheroidal galaxy , 2006 .

[29]  Thomas G. Barnes,et al.  Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis in honor of David L. Lambert , 2005 .

[30]  Tucson,et al.  Leo V: A Companion of a Companion of the Milky Way Galaxy? , 2008, 0807.2831.

[31]  L. Searle,et al.  Abundance Ratios in Extreme Metal-Poor Stars , 1999 .

[32]  Abundance Patterns in the Draco, Sextans, and Ursa Minor Dwarf Spheroidal Galaxies , 2000, astro-ph/0009505.

[33]  Roberto Ragazzoni,et al.  The Elongated Structure of the Hercules Dwarf Spheroidal Galaxy from Deep Large Binocular Telescope Imaging , 2007 .

[34]  B. Yanny,et al.  A New Milky Way Dwarf Satellite in Canes Venatici , 2006 .

[35]  Puragra Guhathakurta,et al.  Uncovering Extremely Metal-Poor Stars in the Milky Way’s Ultrafaint Dwarf Spheroidal Satellite Galaxies , 2008, 0807.1925.

[36]  C. R. James,et al.  Chemical Substructure in the Milky Way Halo: A New Population of Old Stars , 2003 .

[37]  E. D. Friel,et al.  Galactic Globular Cluster Metallicity Scale from the Ca II Triplet I. Catalog , 1997 .

[38]  B. Willman,et al.  A Pair of Boötes: A New Milky Way Satellite , 2007, 0705.1378.

[39]  E. Tolstoy,et al.  Stellar Chemical Signatures and Hierarchical Galaxy Formation , 2004, astro-ph/0406120.

[40]  M. Shetrone,et al.  VLT/UVES Abundances in Four Nearby Dwarf Spheroidal Galaxies. I. Nucleosynthesis and Abundance Ratios , 2002, astro-ph/0211167.

[41]  R. Michael Rich,et al.  Draco 119: A Remarkable Heavy-Element-deficient Giant , 2004, astro-ph/0409646.

[42]  D. Kelson Optimal Techniques in Two‐dimensional Spectroscopy: Background Subtraction for the 21st Century , 2003, astro-ph/0303507.

[43]  A. McWilliam ABUNDANCE RATIOS AND GALACTIC CHEMICAL EVOLUTION , 1997 .

[44]  B. Yanny,et al.  A Faint New Milky Way Satellite in Bootes , 2006, astro-ph/0604355.