Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review

Printing sensors and electronics over flexible substrates are an area of significant interest due to low-cost fabrication and possibility of obtaining multifunctional electronics over large areas. Over the years, a number of printing technologies have been developed to pattern a wide range of electronic materials on diverse substrates. As further expansion of printed technologies is expected in future for sensors and electronics, it is opportune to review the common features, the complementarities, and the challenges associated with various printing technologies. This paper presents a comprehensive review of various printing technologies, commonly used substrates and electronic materials. Various solution/dry printing and contact/noncontact printing technologies have been assessed on the basis of technological, materials, and process-related developments in the field. Critical challenges in various printing techniques and potential research directions have been highlighted. Possibilities of merging various printing methodologies have been explored to extend the lab developed standalone systems to high-speed roll-to-roll production lines for system level integration.

[1]  Ravinder S. Dahiya Towards flexible and conformable electronics , 2014, 2014 10th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME).

[2]  H. Schift Nanoimprint lithography: An old story in modern times? A review , 2008 .

[3]  W. Macdonald,et al.  Engineered Films for Display Technologies , 2004 .

[4]  D. Gethin,et al.  Impact of metered ink volume on reel-to-reel flexographic printed conductive networks for enhanced thin film conductivity , 2012 .

[5]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[6]  John T W Yeow,et al.  Conductive polymer-based sensors for biomedical applications. , 2011, Biosensors & bioelectronics.

[7]  C. K. Chiang,et al.  Electrical Conductivity in Doped Polyacetylene. , 1977 .

[8]  Oleg V. Salata,et al.  Tools of Nanotechnology: Electrospray , 2005 .

[9]  John A. Rogers,et al.  Fabrication of microstructured silicon (µs-Si) from a bulk Si wafer and its use in the printing of high-performance thin-film transistors on plastic substrates , 2010 .

[10]  Jaeyoung Jang,et al.  Poly(3-hexylthiophene) wrapped carbon nanotube/poly(dimethylsiloxane) composites for use in finger-sensing piezoresistive pressure sensors , 2011 .

[11]  Harri Kopola,et al.  Novel roll-to-roll lift-off patterned active-matrix display on flexible polymer substrate , 2009 .

[12]  Weidong Zhou,et al.  Fast Flexible Electronics Based on Printable Thin Mono-Crystalline Silicon , 2011 .

[13]  Andrew A. Burns,et al.  Multivariable passive RFID vapor sensors: roll-to-roll fabrication on a flexible substrate. , 2012, The Analyst.

[14]  Noel Clark,et al.  Organic photovoltaic modules fabricated by an industrial gravure printing proofer , 2013 .

[15]  On the Pinning of Downstream Meniscus for Slot Die Coating , 2013 .

[16]  A. Dinia,et al.  Influence of flexible substrates on inverted organic solar cells using sputtered ZnO as cathode interfacial layer , 2013 .

[17]  Victor P. Mammana,et al.  Patterning quality control of inkjet printed PEDOT:PSS films by wetting properties , 2011 .

[18]  Weidong Zhou,et al.  RF Characterization of Gigahertz Flexible Silicon Thin-Film Transistor on Plastic Substrates Under Bending Conditions , 2013, IEEE Electron Device Letters.

[19]  Jurriaan Huskens,et al.  Fabrication of Transistors on Flexible Substrates: from Mass‐Printing to High‐Resolution Alternative Lithography Strategies , 2012, Advanced materials.

[20]  H. Rothuizen,et al.  Printing meets lithography: Soft approaches to high-resolution patterning , 2001, IBM J. Res. Dev..

[21]  Ananth Dodabalapur,et al.  Organic and polymer transistors for electronics , 2006 .

[22]  Yu-Cheng Lin,et al.  Flexible Electronics Sensors for Tactile Multi-Touching , 2009, Sensors.

[23]  Operating windows of slot die coating: Comparison of theoretical predictions with experimental observations , 2010 .

[24]  Alex Simpkins,et al.  Robotic Tactile Sensing: Technologies and System (Dahiya, R.S. and Valle, M.; 2013) [On the Shelf] , 2013, IEEE Robotics & Automation Magazine.

[25]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[26]  Jurriaan Huskens,et al.  Flexible thin-film transistors using multistep UV nanoimprint lithography , 2012 .

[27]  Gerhard Tröster,et al.  6.2.4 Influence of Flexible Substrate Materials on the Performance of Polymer Composite Gas Sensors , 2012 .

[28]  Sang-Ho Lee,et al.  Characterization of Silver Inkjet Overlap-printing through Cohesion and Adhesion , 2012 .

[29]  Y. Arakawa,et al.  High performance inkjet-printed C60 fullerene thin-film transistors: Toward a low-cost and reproducible solution process , 2013 .

[30]  C. Ha,et al.  Polymers for flexible displays: From material selection to device applications , 2008 .

[31]  Wen-Hsi Lee,et al.  Synthesis of ZnO Nanoparticles to Fabricate a Mask-Free Thin-Film Transistor by Inkjet Printing , 2012 .

[32]  Vivek Subramanian,et al.  Progress Toward Development of All-Printed RFID Tags: Materials, Processes, and Devices , 2005, Proceedings of the IEEE.

[33]  B. B. Narakathu,et al.  Fully Printed Flexible Humidity Sensor , 2011 .

[34]  John Lewis Material challenge for flexible organic devices , 2006 .

[35]  K. Nagato Injection Compression Molding of Replica Molds for Nanoimprint Lithography , 2014 .

[36]  Je Hoon Oh,et al.  All-inkjet-printed electrical components and circuit fabrication on a plastic substrate , 2012 .

[37]  Frank Liao,et al.  Printed electronics for low-cost electronic systems: Technology status and application development , 2008, ESSCIRC 2008 - 34th European Solid-State Circuits Conference.

[38]  Moon Kyu Kwak,et al.  Fabrication of conductive metal lines by plate-to-roll pattern transfer utilizing edge dewetting and flexographic printing. , 2010, Journal of colloid and interface science.

[39]  Jan G. Korvink,et al.  Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials , 2010 .

[40]  L. Lorenzelli,et al.  Bendable piezoresistive sensors by screen printing MWCNT/PDMS composites on flexible substrates , 2014, 2014 10th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME).

[41]  Inyoung Kim,et al.  Reliability of gravure offset printing under various printing conditions , 2010 .

[42]  John A. Rogers,et al.  Mechanically flexible thin-film transistors that use ultrathin ribbons of silicon derived from bulk wafers , 2006 .

[43]  Ravinder Dahiya,et al.  Robotic Tactile Sensing: Technologies and System , 2012 .

[44]  John A Rogers,et al.  High-resolution electrohydrodynamic jet printing. , 2007, Nature materials.

[45]  Ravinder Dahiya,et al.  Fabrication of single crystal silicon micro-/nanostructures and transferring them to flexible substrates , 2012 .

[46]  L. Lorenzelli,et al.  Screen printed flexible pressure sensors skin , 2014, 25th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2014).

[47]  Barbara Stadlober,et al.  High-performing submicron organic thin-film transistors fabricated by residue-free embossing , 2010 .

[48]  G. Whitesides,et al.  Nanostructures Replicated by Polymer Molding , 2004 .

[49]  Ulrich S. Schubert,et al.  Geometric control of inkjet printed features using a gelating polymer , 2007 .

[50]  Placid Mathew Ferreira,et al.  Printable Single‐Crystal Silicon Micro/Nanoscale Ribbons, Platelets and Bars Generated from Bulk Wafers , 2007 .

[51]  T. Trigaud,et al.  OTFT with Silk Screen Printed Drain and Source , 2009 .

[52]  F. Krebs,et al.  Roll‐to‐Roll fabrication of large area functional organic materials , 2013 .

[53]  Jin-Woo Choi,et al.  Improved Dispersion of Carbon Nanotubes in Polymers at High Concentrations , 2012, Nanomaterials.

[54]  L. Guo,et al.  Nanoimprint Lithography: Methods and Material Requirements , 2007 .

[55]  Jukka Hast,et al.  Gravure printed flexible organic photovoltaic modules , 2011 .

[56]  Yonggang Huang,et al.  Transfer printing by kinetic control of adhesion to an elastomeric stamp , 2006 .

[57]  Paolo Lugli,et al.  Flexible Carbon Nanotube Based Gas Sensors Fabricated by Large-Scale Spray Deposition , 2013, IEEE Sensors Journal.

[58]  Ravinder S. Dahiya,et al.  Bendable Ultra-Thin Chips on Flexible Foils , 2013, IEEE Sensors Journal.

[59]  Xiangfeng Duan,et al.  High-performance thin-film transistors using semiconductor nanowires and nanoribbons , 2003, Nature.

[60]  Paolo Lugli,et al.  Fabrication of carbon nanotube thin films on flexible substrates by spray deposition and transfer printing , 2013 .

[61]  Arjan P Quist,et al.  Recent advances in microcontact printing , 2005, Analytical and bioanalytical chemistry.

[62]  Mohammad S. M. Saifullah,et al.  Metal hierarchical patterning by direct nanoimprint lithography , 2013, Scientific Reports.

[63]  Kuang-Chao Fan,et al.  Flexible Temperature Sensor Array Based on a Graphite-Polydimethylsiloxane Composite , 2010, Sensors.

[64]  Mark A.M. Leenen,et al.  Printable electronics: flexibility for the future , 2009 .

[65]  Jinsoo Noh,et al.  Fully roll-to-roll gravure printed rectenna on plastic foils for wireless power transmission at 13.56 MHz , 2012, Nanotechnology.

[66]  M. Hatalis,et al.  A modified offset roll printing for thin film transistor applications , 2012 .

[67]  Erin Baker,et al.  Estimating the manufacturing cost of purely organic solar cells , 2009 .

[68]  Frederik C. Krebs,et al.  Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating , 2012, Nature Communications.

[69]  Suwan N Jayasinghe,et al.  Bio-electrosprays: the next generation of electrified jets. , 2006, Biotechnology journal.

[70]  A. Carlo,et al.  Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties , 2011 .

[71]  Ole Hagemann,et al.  A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration , 2009 .

[72]  B. Ju,et al.  The silicon Schottky diode on flexible substrates by transfer method , 2013 .

[73]  Kanti Jain,et al.  Flexible Electronics and Displays: High-Resolution, Roll-to-Roll, Projection Lithography and Photoablation Processing Technologies for High-Throughput Production , 2005, Proceedings of the IEEE.

[74]  J. Rogers,et al.  Recent progress in soft lithography , 2005 .

[75]  Ulrich S Schubert,et al.  Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. , 2008, Soft matter.

[76]  Gabriele Centi,et al.  A perspective on carbon materials for future energy application , 2013 .

[77]  Roger Fabian W. Pease,et al.  Lithography and Other Patterning Techniques for Future Electronics , 2008, Proceedings of the IEEE.

[78]  Kyung Hyun Choi,et al.  Drop-on-Demand Direct Printing of Colloidal Copper Nanoparticles by Electrohydrodynamic Atomization , 2011 .

[79]  Zhenqiang Ma,et al.  Bendable high-frequency microwave switches formed with single-crystal silicon nanomembranes on plastic substrates , 2009 .

[80]  N. Halonen,et al.  Gravure printing of conductive particulate polymer inks on flexible substrates , 2005 .

[81]  John A. Rogers,et al.  Bendable single crystal silicon thin film transistors formed by printing on plastic substrates , 2005 .

[82]  J. Rogers,et al.  A printable form of silicon for high performance thin film transistors on plastic substrates , 2004 .

[83]  W. Macdonald,et al.  Latest advances in substrates for flexible electronics , 2007 .

[84]  G. Grüner,et al.  Carbon nanotube films for transparent and plastic electronics , 2006 .

[85]  Giulio Sandini,et al.  Tactile Sensing—From Humans to Humanoids , 2010, IEEE Transactions on Robotics.

[86]  Gordon Cheng,et al.  Directions Toward Effective Utilization of Tactile Skin: A Review , 2013, IEEE Sensors Journal.

[87]  Hon Tat Hui,et al.  Fabrication of wireless sensors on flexible film using screen printing and via filling , 2011, DTIP 2011.

[88]  Matthew T. Cole,et al.  Flexible Electronics: The Next Ubiquitous Platform , 2012, Proceedings of the IEEE.

[89]  F. Krebs Fabrication and processing of polymer solar cells: A review of printing and coating techniques , 2009 .

[90]  A. Facchetti,et al.  A high-mobility electron-transporting polymer for printed transistors , 2009, Nature.

[91]  Yang Wang,et al.  Effect of surface energies on screen printing resolution , 1996 .

[92]  Yi Cui,et al.  Scalable coating and properties of transparent, flexible, silver nanowire electrodes. , 2010, ACS nano.

[93]  R. Österbacka,et al.  Paper Electronics , 2011, Advanced materials.

[94]  Audrey M. Bowen,et al.  Transfer Printing Techniques for Materials Assembly and Micro/Nanodevice Fabrication , 2012, Advanced materials.

[95]  Martinus Henricus Adrianus van Dongen µPlasma patterning and inkjet printing to enhance localized wetting and mixing behaviour , 2014 .

[96]  Mikkel Jørgensen,et al.  Upscaling of polymer solar cell fabrication using full roll-to-roll processing. , 2010, Nanoscale.

[97]  Kwack Young‐Jin,et al.  Screen-printed Source-drain Electrodes for a Solution-processed Zinc-tin-oxide Thin-film Transistor , 2011 .

[98]  Markus Hösel,et al.  Roll-to-roll fabrication of polymer solar cells , 2012 .

[99]  Wen-Yang Chang,et al.  A Large Area Flexible Array Sensors Using Screen Printing Technology , 2009, Journal of Display Technology.

[100]  V. Subramanian,et al.  Scaling and Optimization of Gravure-Printed Silver Nanoparticle Lines for Printed Electronics , 2010, IEEE Transactions on Components and Packaging Technologies.

[101]  Paddy K. L. Chan,et al.  Flexible transistor active matrix array with all screen-printed electrodes , 2013, Optics & Photonics - Photonic Devices + Applications.

[102]  Zhenqiang Ma,et al.  7.8-GHz flexible thin-film transistors on a low-temperature plastic substrate , 2007 .

[103]  John A. Rogers,et al.  Inorganic Semiconductors for Flexible Electronics , 2007 .

[104]  L. Chi,et al.  Strategies for High Resolution Patterning of Conducting Polymers , 2010 .

[105]  Wim Dehaene,et al.  Complementary integrated circuits on plastic foil using inkjet printed n- and p-type organic semiconductors: Fabrication, characterization, and circuit analysis , 2012 .

[106]  Matthew R. Linford,et al.  Rapid and convenient method for preparing masters for microcontact printing with 1–12 μm features , 2004 .

[107]  P. D. Fleming,et al.  Influence of Pigment Particle Size and Pigment Ratio on Printability of Glossy Ink Jet Paper Coatings , 2005, Journal of Imaging Science and Technology.

[108]  Yonggang Huang,et al.  Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations , 2008, Proceedings of the National Academy of Sciences.

[109]  P. Barquinha,et al.  High-Performance Flexible Hybrid Field-Effect Transistors Based on Cellulose Fiber Paper , 2008, IEEE Electron Device Letters.

[110]  D. Wedge,et al.  Fabrication of planar organic nanotransistors using low temperature thermal nanoimprint lithography for chemical sensor applications , 2010, Nanotechnology.

[111]  G. Jabbour,et al.  Inkjet Printing—Process and Its Applications , 2010, Advanced materials.

[112]  Andreas Offenhäusser,et al.  UV nanoimprint lithography with rigid polymer molds , 2009 .

[113]  Richard H. Friend,et al.  Lithography‐Free, Self‐Aligned Inkjet Printing with Sub‐Hundred‐Nanometer Resolution , 2005 .

[114]  Zhenqiang Ma,et al.  Microwave thin-film transistors using Si nanomembranes on flexible polymer substrate , 2006 .

[115]  Moses O. Tadé,et al.  Morphological Investigation into Starch Bio-Nanocomposites via Synchrotron Radiation and Differential Scanning Calorimetry , 2011 .

[116]  Kyung Hyun Choi,et al.  Electrohydrodynamic Spray Deposition of ZnO Nanoparticles , 2010 .

[117]  M. Kovalenko,et al.  Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands , 2009, Science.

[118]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[119]  M. S. Yusof,et al.  A Study on Printed Multiple Solid Line by Combining Microcontact and Flexographic Printing Process for Microelectronic and Biomedical Applications , 2013 .

[120]  S. Leppävuori,et al.  Gravure offset printing of polymer inks for conductors , 2004 .

[121]  Luigi Pinna,et al.  Tactile Sensing Chips With POSFET Array and Integrated Interface Electronics , 2014, IEEE Sensors Journal.

[122]  J. Siden,et al.  Line width limitations of flexographic-screen- and inkjet printed RFID antennas , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[123]  Yongan Huang,et al.  Roll-to-Roll Processing of Flexible Heterogeneous Electronics With Low Interfacial Residual Stress , 2011, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[124]  Toshiyuki Kobayashi,et al.  Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process , 2013 .

[125]  Jurriaan Huskens,et al.  Microcontact Printing: Limitations and Achievements , 2009 .

[126]  Jaeyoung Kim,et al.  All-Printed and Roll-to-Roll-Printable 13.56-MHz-Operated 1-bit RF Tag on Plastic Foils , 2010, IEEE Transactions on Electron Devices.

[127]  Start-up of slot die coating , 2009 .

[128]  Mario Caironi,et al.  High-resolution direct-writing of metallic electrodes on flexible substrates for high performance organic field effect transistors , 2013 .

[129]  Yi Zheng,et al.  Direct Desktop Printed-Circuits-on-Paper Flexible Electronics , 2013, Scientific Reports.

[130]  Ravinder Dahiya,et al.  Epidermial electronics: flexible electronics for biomedical applications , 2015 .

[131]  Min Cheol Park,et al.  Soft lithography for microfluidics: a review , 2008 .

[132]  Ravinder S. Dahiya,et al.  Flexible thermoelectric generator based on transfer printed Si microwires , 2014, 2014 44th European Solid State Device Research Conference (ESSDERC).

[133]  Jun Li,et al.  High performance ZnO-thin-film transistor with Ta2O5 dielectrics fabricated at room temperature , 2009 .

[134]  John A. Rogers,et al.  Deterministic assembly of releasable single crystal silicon-metal oxide field-effect devices formed from bulk wafers , 2013 .

[135]  K. Choi,et al.  Development of Electrostatic Inkjet Head by Integrating Metallic and Silica Capillaries for Stable Meniscus , 2012 .

[136]  B. Ravoo,et al.  Stamps, inks and substrates: polymers in microcontact printing , 2010 .

[137]  Takao Someya,et al.  Printed shadow masks for organic transistors , 2007 .

[138]  G. Metta,et al.  Towards Tactile Sensing System on Chip for Robotic Applications , 2011, IEEE Sensors Journal.

[139]  K. Gottschalk,et al.  Fabrication of micro pillars using multiwall carbon nanotubes/polymer nanocomposites , 2013 .

[140]  Leandro Lorenzelli,et al.  Flexible Tactile Sensors Using Screen-Printed P(VDF-TrFE) and MWCNT/PDMS Composites , 2015, IEEE Sensors Journal.

[141]  Hyun Wook Kang,et al.  Liquid transfer between two separating plates for micro-gravure-offset printing , 2008 .

[142]  A. Javey,et al.  Toward the Development of Printable Nanowire Electronics and Sensors , 2009 .

[143]  D. A. Clark Major Trends in Gravure Printed Electronics , 2010 .

[144]  R. Soukup,et al.  Organic based sensors: Novel screen printing technique for sensing layers deposition , 2012, 2012 35th International Spring Seminar on Electronics Technology.

[145]  Christopher S. Chen,et al.  Microcontact printing: A tool to pattern. , 2007, Soft matter.

[146]  P. Sheng,et al.  Characterizing and Patterning of PDMS‐Based Conducting Composites , 2007 .

[147]  Craig E. Banks,et al.  Printable thin film supercapacitors utilizing single crystal cobalt hydroxidenanosheets , 2012 .

[148]  John A Rogers,et al.  Semiconductor wires and ribbons for high-performance flexible electronics. , 2008, Angewandte Chemie.

[149]  S. Ko,et al.  Silver nanoparticle piezoresistive sensors fabricated by roll-to-roll slot-die coating and laser direct writing. , 2014, Optics express.

[150]  Nasser Peyghambarian,et al.  Screen printing for the fabrication of organic light-emitting devices , 2001, SPIE Optics + Photonics.

[151]  Kyung Hyun Choi,et al.  Direct patterning and electrospray deposition through EHD for fabrication of printed thin film transistors , 2011 .

[152]  Ghassan E. Jabbour,et al.  Online monitoring of printed electronics by Spectral-Domain Optical Coherence Tomography , 2013, Scientific Reports.

[153]  Wi Hyoung Lee,et al.  Inkjet‐Printed Single‐Droplet Organic Transistors Based on Semiconductor Nanowires Embedded in Insulating Polymers , 2010 .

[154]  B. Li,et al.  A sandwiched flexible polymer mold for control of particle-induced defects in nanoimprint lithography , 2013 .

[155]  Jinsoo Noh,et al.  Fully Gravure-Printed Flexible Full Adder Using SWNT-Based TFTs , 2012, IEEE Electron Device Letters.

[156]  Arokia Nathan,et al.  Amorphous silicon technology for large area digital X-ray and optical imaging , 2002, Microelectron. Reliab..

[157]  Dong-Soo Kim,et al.  The effect of shear force on ink transfer in gravure offset printing , 2010 .

[158]  John A. Rogers,et al.  Bendable integrated circuits on plastic substrates by use of printed ribbons of single-crystalline silicon , 2007 .

[159]  Weidong Zhou,et al.  Fast flexible electronics using transferrable silicon nanomembranes , 2012 .

[160]  D. Gethin,et al.  Patterning of micro-scale conductive networks using reel-to-reel flexographic printing , 2010 .

[161]  H. Kempa,et al.  Complementary Ring Oscillator Exclusively Prepared by Means of Gravure and Flexographic Printing , 2011, IEEE Transactions on Electron Devices.

[162]  H. Ohta,et al.  Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor , 2003, Science.