Rainbow triangles in three-colored graphs

Abstract Erdős and Sos proposed the problem of determining the maximum number F ( n ) of rainbow triangles in 3-edge-colored complete graphs on n vertices. They conjectured that F ( n ) = F ( a ) + F ( b ) + F ( c ) + F ( d ) + a b c + a b d + a c d + b c d , where a + b + c + d = n and a , b , c , d are as equal as possible. We prove that the conjectured recurrence holds for sufficiently large n . We also prove the conjecture for n = 4 k for all k ≥ 0 . These results imply that lim ⁡ F ( n ) ( n 3 ) = 0.4 , and determine the unique limit object. In the proof we use flag algebras combined with stability arguments.

[1]  Hao Huang On the Maximum Induced Density of Directed Stars and Related Problems , 2014, SIAM J. Discret. Math..

[2]  John M. Talbot,et al.  Hypergraphs Do Jump , 2010, Combinatorics, Probability and Computing.

[3]  József Balogh,et al.  Maximum density of induced 5-cycle is achieved by an iterated blow-up of 5-cycle , 2016, Eur. J. Comb..

[4]  Rahil Baber,et al.  Tur\'an densities of hypercubes , 2012 .

[5]  Jan Hladký,et al.  Counting flags in triangle-free digraphs , 2009, Comb..

[6]  Alexander A. Razborov,et al.  Flag Algebras: An Interim Report , 2013, The Mathematics of Paul Erdős II.

[7]  Jan Volec,et al.  Minimum Number of Monotone Subsequences of Length 4 in Permutations , 2015, Comb. Probab. Comput..

[8]  Alexander A. Razborov On the Caccetta-Häggkvist Conjecture with Forbidden Subgraphs , 2013, J. Graph Theory.

[9]  Vladimir Nikiforov,et al.  The number of cliques in graphs of given order and size , 2007, 0710.2305.

[10]  Emil R. Vaughan,et al.  Turán H-Densities for 3-Graphs , 2012, Electron. J. Comb..

[11]  József Balogh,et al.  Rainbow copies of C4 in edge-colored hypercubes , 2016, Discret. Appl. Math..

[12]  Andrzej Grzesik On the maximum number of five-cycles in a triangle-free graph , 2012, J. Comb. Theory, Ser. B.

[13]  Michael Joswig,et al.  polymake: a Framework for Analyzing Convex Polytopes , 2000 .

[14]  Alexander A. Razborov,et al.  On the Minimal Density of Triangles in Graphs , 2008, Combinatorics, Probability and Computing.

[15]  Daniel Král,et al.  Monochromatic triangles in three-coloured graphs , 2013, J. Comb. Theory, Ser. B.

[16]  R. Glebov,et al.  A problem of Erdős and Sós on 3-graphs , 2013, 1303.7372.

[17]  Hong Liu,et al.  Upper bounds on the size of 4- and 6-cycle-free subgraphs of the hypercube , 2014, Eur. J. Comb..

[18]  A. Hajnal,et al.  On Ramsey Like Theorems , Problems and Results , 2005 .

[19]  John M. Talbot,et al.  A Solution to the 2/3 Conjecture , 2014, SIAM J. Discret. Math..

[20]  Jan Hladký,et al.  On the number of pentagons in triangle-free graphs , 2013, J. Comb. Theory, Ser. A.

[21]  Jean-Sébastien Sereni,et al.  A New Lower Bound Based on Gromov’s Method of Selecting Heavily Covered Points , 2012, Discret. Comput. Geom..

[22]  Konrad Sperfeld,et al.  The inducibility of small oriented graphs , 2011 .

[23]  Alexander A. Razborov,et al.  Flag algebras , 2007, Journal of Symbolic Logic.

[24]  Oleg Pikhurko,et al.  Minimum Number of k-Cliques in Graphs with Bounded Independence Number , 2012, Combinatorics, Probability and Computing.

[25]  Christian Reiher,et al.  The clique density theorem , 2012, 1212.2454.