Analysis and Optimization of Transformer-Based Series Power Combining for Reconfigurable Power Amplifiers

Transformer-based series power combiners are analyzed within the context of reconfigurable, watt-level, wideband digital envelope tracking transmitters. A model is developed for designing and analyzing transformer-based switchable series combiners. This model takes into account losses in the windings and nonideal mutual coupling, as well as the effect of switching and scaling the input amplifiers on the combiner efficiency, input impedance, and power combining ratio. Optimum combining efficiency is derived for a combiner with scaled sources. Based on the developed model, a four-element 29.5-dBm power amplifier with 31% peak efficiency at 1.9 GHz, using a 1.5-V supply is designed and simulated in IBM 130-nm CMOS technology. The efficiency drops to 14% at 12 dB power back-off when elements are turned off. The amplifier maintains an output power >; 25 dBm from 1.8 GHz to 2.5 GHz. The studies presented in this paper can be extended to any series combiner implementation and any frequency range, which can be effective in the design of watt-level power amplifiers in submicrometer CMOS technologies.

[1]  Bertan Bakkaloglu,et al.  Combined Linear and Δ-Modulated Switched-Mode PA Supply Modulator for Polar Transmitters , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[2]  A.M. Niknejad,et al.  A Fully Integrated Dual-Mode Highly Linear 2.4 GHz CMOS Power Amplifier for 4G WiMax Applications , 2009, IEEE Journal of Solid-State Circuits.

[3]  Paul T. M. van Zeijl,et al.  High-power digital envelope modulator for a polar transmitter in 65nm CMOS , 2008, 2008 IEEE Custom Integrated Circuits Conference.

[4]  Bertan Bakkaloglu,et al.  Combined Linear and $\Delta$-Modulated Switch-Mode PA Supply Modulator for Polar Transmitters , 2009, IEEE Journal of Solid-State Circuits.

[5]  J.R. Long,et al.  Monolithic transformers for silicon RF IC design , 2000, IEEE Journal of Solid-State Circuits.

[6]  Bertan Bakkaloglu,et al.  A 10MHz-Bandwidth 2mV-Ripple PA-Supply Regulator for CDMA Transmitters , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[7]  Ali M. Niknejad,et al.  Transformer-Coupled Power Amplifier Stability and Power Back-Off Analysis , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[8]  Jau-Horng Chen,et al.  A low voltage W-CDMA polar transmitter with digital envelope path gain compensation , 2006, IEEE Microwave and Wireless Components Letters.

[9]  Ali Hajimiri,et al.  A Fully-Integrated Quad-Band GSM/GPRS CMOS Power Amplifier , 2008, IEEE Journal of Solid-State Circuits.

[10]  Paul T. M. van Zeijl,et al.  On the Attenuation of DAC Aliases Through Multiphase Clocking , 2009, IEEE Transactions on Circuits and Systems II: Express Briefs.

[11]  Joy Laskar,et al.  Analysis and Design of Fully Integrated High-Power Parallel-Circuit Class-E CMOS Power Amplifiers , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[12]  L.E. Larson,et al.  A capacitance-compensation technique for improved linearity in CMOS class-AB power amplifiers , 2004, IEEE Journal of Solid-State Circuits.

[13]  Ali Hajimiri,et al.  Fully integrated CMOS power amplifier design using the distributed active-transformer architecture , 2002, IEEE J. Solid State Circuits.

[14]  L.E. Larson,et al.  Digital-IF WCDMA handset transmitter IC in 0.25-/spl mu/m SiGe BiCMOS , 2004, IEEE Journal of Solid-State Circuits.

[15]  A. Grebennikov,et al.  A novel wideband digital power amplifier and transmitter architecture for multimode handsets , 2004, Proceedings. 2004 IEEE Radio and Wireless Conference (IEEE Cat. No.04TH8746).

[16]  J. Laskar,et al.  A Monolithic Voltage-Boosting Parallel-Primary Transformer Structures for Fully Integrated CMOS Power Amplifier Design , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[17]  Ockgoo Lee,et al.  Power-Combining Transformer Techniques for Fully-Integrated CMOS Power Amplifiers , 2008, IEEE Journal of Solid-State Circuits.

[18]  Jingshi Yao,et al.  Power Amplifier Selection for LINC Applications , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[19]  Gin-Kou Ma,et al.  High-linearity and temperature-insensitive 2.4 GHz SiGe power amplifier with dynamic-bias control , 2005, 2005 IEEE Radio Frequency integrated Circuits (RFIC) Symposium - Digest of Papers.

[20]  Lawrence E. Larson,et al.  Digital-IF WCDMA handset transmitter IC in 0.25-μm SiGe BiCMOS , 2004 .

[21]  D. Rutledge,et al.  An optimized design of distributed active transformer , 2005, IEEE Transactions on Microwave Theory and Techniques.

[22]  Ali Hajimiri,et al.  Distributed active transformer-a new power-combining and impedance-transformation technique , 2002 .

[23]  Gang Liu,et al.  Fully Integrated CMOS Power Amplifier With Efficiency Enhancement at Power Back-Off , 2008, IEEE Journal of Solid-State Circuits.

[24]  W.H. Doherty,et al.  A New High Efficiency Power Amplifier for Modulated Waves , 1936, Proceedings of the Institute of Radio Engineers.

[25]  E. McCune Advanced architectures for high-efficiency multi-mode, multi-band terminal power amplifiers , 2004, Proceedings. 2004 IEEE Radio and Wireless Conference (IEEE Cat. No.04TH8746).

[26]  B. Wooley,et al.  A CMOS RF power amplifier with parallel amplification for efficient power control , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).

[27]  Ying-Hsi Lin,et al.  A 2.4-GHz +25dBm P-1dB linear power amplifier with dynamic bias control in a 65-nm CMOS process , 2008, ESSCIRC 2008 - 34th European Solid-State Circuits Conference.

[28]  Asad A. Abidi,et al.  An Outphasing Power Amplifier for a Software-Defined Radio Transmitter , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[29]  Gang Liu,et al.  A 5.8 GHz 1 V Linear Power Amplifier Using a Novel On-Chip Transformer Power Combiner in Standard 90 nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[30]  Michiel Steyaert,et al.  A 2.45-GHz 0.13-$\mu{\hbox {m}}$ CMOS PA With Parallel Amplification , 2007, IEEE Journal of Solid-State Circuits.

[31]  Fadhel M. Ghannouchi,et al.  A Novel Architecture of Delta-Sigma Modulator Enabling All-Digital Multiband Multistandard RF Transmitters Design , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[32]  Walid K. M. Ahmed Quantization Noise Suppression in Digitally Segmented Amplifiers , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[33]  Christophe Garnier,et al.  A Single-Chip WCDMA Envelope Reconstruction LDMOS PA with 130MHz Switched-Mode Power Supply , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[34]  Paul N. Whatmough,et al.  System-Efficiency Analysis of Power Amplifier Supply-Tracking Regimes in Mobile Transmitters , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[35]  Amirpouya Kavousian,et al.  A Digitally Modulated Polar CMOS Power Amplifier With a 20-MHz Channel Bandwidth , 2008, IEEE Journal of Solid-State Circuits.

[36]  A.A. Abidi,et al.  All-Digital Outphasing Modulator for a Software-Defined Transmitter , 2009, IEEE Journal of Solid-State Circuits.

[37]  Bertan Bakkaloglu,et al.  A 10 MHz Bandwidth, 2 mV Ripple PA Regulator for CDMA Transmitters , 2008, IEEE Journal of Solid-State Circuits.

[38]  Feipeng Wang,et al.  A Monolithic High-Efficiency 2.4-GHz 20-dBm SiGe BiCMOS Envelope-Tracking OFDM Power Amplifier , 2007, IEEE Journal of Solid-State Circuits.

[39]  Songcheol Hong,et al.  A Load-Shared CMOS Power Amplifier With Efficiency Boosting at Low Power Mode for Polar Transmitters , 2008, IEEE Transactions on Microwave Theory and Techniques.

[40]  P. Reynaert,et al.  A 1.75-GHz polar modulated CMOS RF power amplifier for GSM-EDGE , 2005, IEEE Journal of Solid-State Circuits.