Impact of Atomic Layer Deposition to Nanophotonic Structures and Devices

We review the significance of optical thin films by Atomic Layer Deposition (ALD) method to fabricate nanophotonic devices and structures. ALD is a versatile technique to deposit functional coatings on reactive surfaces with conformal growth of compound materials, precise thickness control capable of angstrom resolution and coverage of high aspect ratio nanostructures using wide range of materials. ALD has explored great potential in the emerging fields of photonics, plasmonics, nano-biotechnology, and microelectronics. ALD technique uses sequential reactive chemical reactions to saturate a surface with a monolayer by pulsing of a first precursor (metal alkoxides or covalent halides), followed by reaction with second precursor molecules such as water to form the desired compound coatings. The targeted thickness of the desired compound material is controlled by the number of ALD cycles of precursor molecules that ensures the self limiting nature of reactions. The conformal growth and filling of TiO2 and Al2O3 optical material on nanostructures and their resulting optical properties have been described. The low temperature ALD-growth on various replicated sub-wavelength polymeric gratings is discussed.

[1]  Thomas Käsebier,et al.  High aspect ratio deep UV wire grid polarizer fabricated by double patterning , 2012 .

[2]  Jari Turunen,et al.  Thermal behavior of waveguide gratings , 2011, Microtechnologies.

[3]  R. Wood XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum , 1902 .

[4]  Karl Knop,et al.  Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves , 1978 .

[5]  S. Bedair,et al.  Sidewall growth by atomic layer epitaxy , 1988 .

[6]  Paul Yager,et al.  Optical and electronic design for a high-performance surface plasmon resonance imager , 2004, SPIE Optics East.

[7]  J. Zhao,et al.  Stability of Silver Nanoparticles Fabricated by Nanosphere Lithography and Atomic Layer Deposition to Femtosecond Laser Excitation , 2008 .

[8]  Junshan Ma,et al.  Sensitivity of guided mode resonance filter-based biosensor in visible and near infrared ranges , 2011 .

[9]  Sang‐Hyun Oh,et al.  Atomic layer deposition: A versatile technique for plasmonics and nanobiotechnology , 2012 .

[10]  A. Liou,et al.  Injection molding of polymer micro- and sub-micron structures with high-aspect ratios , 2006 .

[11]  Hyungsoon Im,et al.  Atomic layer deposition of dielectric overlayers for enhancing the optical properties and chemical stability of plasmonic nanoholes. , 2010, ACS nano.

[12]  Jyrki Saarinen,et al.  Guided-mode resonance filters of finite aperture , 1995 .

[13]  Zhaoming Zhang,et al.  Enhanced adhesion of atomic layer deposited titania on polycarbonate substrates , 2007 .

[14]  M. Kuittinen,et al.  Atomic layer deposited titanium dioxide and its application in resonant waveguide grating. , 2010, Applied optics.

[15]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[16]  Joel Davis,et al.  Low temperature atomic layer deposition of titania thin films , 2010 .

[17]  M. Erdmanis,et al.  ALD-Assisted Multiorder Dispersion Engineering of Nanophotonic Strip Waveguides , 2012, Journal of Lightwave Technology.

[18]  K. Vahala Optical microcavities , 2003, Nature.

[19]  R. H. Ritchie Plasma Losses by Fast Electrons in Thin Films , 1957 .

[20]  M. Kuittinen,et al.  Transparent thermoplastics: Replication of diffractive optical elements using micro-injection molding , 2007 .

[21]  Seppo Honkanen,et al.  Nonpolarizing single layer inorganic and double layer organic-inorganic one-dimensional guided mode resonance filters , 2013, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[22]  R. Piestun,et al.  Modification of opal photonic crystals using Al2O3 atomic layer deposition , 2006 .

[23]  Ari Tervonen,et al.  Replicated Polymer Light Guide Interconnector with Depth Modified Surface Relief Grating Couplers , 2007 .

[24]  Elton Graugnard,et al.  TiO2 Inverse Opals Fabricated Using Low‐Temperature Atomic Layer Deposition , 2005 .

[25]  Estiko Rijanto,et al.  A Review of Atomic Layer Deposition for Nanoscale Devices , 2012 .

[26]  Fabrication of metallic nanopatterns with ultrasmooth surface on various substrates through lift-off and transfer process. , 2013, Optics express.

[27]  Han-Bo-Ram Lee,et al.  Applications of atomic layer deposition to nanofabrication and emerging nanodevices , 2009 .

[28]  J. Pimbley,et al.  Two-dimensional atomic correlations of epitaxial layers , 1985 .

[29]  Muhammad Saleem,et al.  Hydrogen silsesquioxane resist stamp for replication of nanophotonic components in polymers , 2012 .

[30]  D. Gaillot,et al.  Photonic band tuning in two-dimensional photonic crystal slab waveguides by atomic layer deposition , 2006 .

[31]  A. Purniawan TiO 2 ALD NANOLAYER AS EVANESCENT WAVEGUIDE FOR BIOMEDICAL SENSOR APPLICATIONS , 2010 .

[32]  Matthias Worgull,et al.  Hot Embossing: Theory and Technology of Microreplication , 2009 .

[33]  M. Ritala,et al.  Titanium Isopropoxide as a Precursor in Atomic Layer Epitaxy of Titanium Dioxide Thin Films. , 1993 .

[34]  M. Kuittinen,et al.  Angled sidewalls in silicon slot waveguides: conformal filling and mode properties. , 2009, Optics express.

[35]  Markus Pessa,et al.  atomic layer epitaxy , 1986, Catalysis from A to Z.

[36]  J. S. Ponraj,et al.  Review on Atomic Layer Deposition and Applications of Oxide Thin Films , 2013 .

[37]  Seppo Honkanen,et al.  Feature size reduction of silicon slot waveguides by partial filling using atomic layer deposition , 2009 .

[38]  Daeyeon Lee,et al.  Mechanical reinforcement of nanoparticle thin films using atomic layer deposition. , 2011, ACS nano.

[39]  M. Ritala,et al.  Introducing atomic layer epitaxy for the deposition of optical thin films , 1996 .

[40]  J. Pate Introduction to Optics , 1937, Nature.

[41]  Thomas Käsebier,et al.  Tungsten wire grid polarizer for applications in the DUV spectral range. , 2012, Applied optics.

[42]  M. Kuittinen,et al.  Single-layer one-dimensional nonpolarizing guided-mode resonance filters under normal incidence. , 2011, Optics letters.

[43]  Jari Turunen,et al.  Effect of substrate overetching and heat treatment of titanium oxide waveguide gratings and thin films on their optical properties. , 2013, Applied optics.

[44]  Steven M. George,et al.  Surface Chemistry for Atomic Layer Growth , 1996 .

[45]  Vladimir M Shalaev,et al.  The Case for Plasmonics , 2010, Science.

[46]  Elton Graugnard,et al.  Large-Scale Fabrication of Ordered Nanobowl Arrays , 2004 .

[47]  S. George,et al.  Low-Temperature Al2O3 Atomic Layer Deposition , 2004 .

[48]  N. El-Masry,et al.  Atomic layer epitaxy of AlGaAs , 1990 .

[49]  S. Honkanen,et al.  Thermal properties of thin Al2O3 films and their barrier layer effect on thermo-optic properties of TiO2 films grown by atomic layer deposition , 2013 .

[50]  Ricardo Ruiz,et al.  Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption. , 2013, Nano letters.

[51]  Jaan Aarik,et al.  Anomalous effect of temperature on atomic layer deposition of titanium dioxide , 2000 .

[52]  K. Vahala Optical microcavities : Photonic technologies , 2003 .

[53]  S. Chou,et al.  Sub-10 nm imprint lithography and applications , 1997 .

[54]  J. Schoonman,et al.  Atomic layer deposition of CuxS , 2001 .

[55]  C. Chung,et al.  Effects of oxygen flow ratios and annealing temperatures on Raman and photoluminescence of titanium oxide thin films deposited by reactive magnetron sputtering , 2009 .

[56]  R. Magnusson,et al.  Guided-Mode Resonant Thermo-Optic Tunable Filters , 2013, IEEE Photonics Technology Letters.

[57]  Markku Kuittinen,et al.  Application of atomic layer deposition in nanophotonics , 2014, Photonics West - Optoelectronic Materials and Devices.

[58]  Pekka Soininen,et al.  Perfectly Conformal TiN and Al2O3 Films Deposited by Atomic Layer Deposition , 1999 .

[59]  A. A. Oliner,et al.  A New Theory of Wood’s Anomalies on Optical Gratings , 1965 .

[60]  Steven M. George,et al.  Al3O3 thin film growth on Si(100) using binary reaction sequence chemistry , 1997 .

[61]  Alyson V. Whitney,et al.  Toward a thermally robust operando surface-enhanced raman spectroscopy substrate , 2007 .

[62]  Muhammad Saleem,et al.  Thermal properties of TiO2 films fabricated by atomic layer deposition , 2014 .

[63]  Arthur D. Sherman,et al.  Atomic Layer Deposition: Principles, Characteristics, and Nanotechnology Applications , 2013 .

[64]  J A Dobrowolski,et al.  Optimal single-band normal-incidence antireflection coatings. , 1996, Applied optics.

[65]  H. Macleod,et al.  Thin-Film Optical Filters , 1969 .

[66]  M. Ritala,et al.  Atomic Layer Deposition of Nanostructured TiO2 Photocatalysts via Template Approach , 2007 .

[67]  Pekka Soininen,et al.  Growth of titanium dioxide thin films by atomic layer epitaxy , 1993 .

[68]  J. Pendry,et al.  Evanescently coupled resonance in surface plasmon enhanced transmission , 2001 .

[69]  S. P. Huber,et al.  Subwavelength single layer absorption resonance antireflection coatings. , 2014, Optics express.

[70]  Jari Turunen,et al.  Partially athermalized waveguide gratings , 2012, Photonics Europe.

[71]  Adriana Szeghalmi,et al.  Atomic layer deposition of Al2O3 and TiO2 multilayers for applications as bandpass filters and antireflection coatings. , 2009, Applied optics.

[72]  Seppo Honkanen,et al.  Mode-splitting of a non-polarizing guided mode resonance filter by substrate overetching effect , 2014, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[73]  S. Honkanen,et al.  Effect of waveguide thickness layer on spectral resonance of a Guided Mode Resonance Filter , 2014, Proceedings of 2014 11th International Bhurban Conference on Applied Sciences & Technology (IBCAST) Islamabad, Pakistan, 14th - 18th January, 2014.

[74]  W Freude,et al.  Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition. , 2011, Optics express.

[75]  Domenico Pacifici,et al.  Plasmonic nanostructure design for efficient light coupling into solar cells. , 2008, Nano letters.

[76]  T H Allen,et al.  Comparison of the properties of titanium dioxide films prepared by various techniques. , 1989, Applied optics.

[77]  Sang-Hyun Oh,et al.  Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells , 2008, LEOS 2008 - 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[78]  Mikko Ritala,et al.  Atomic layer epitaxy growth of aluminum oxide thin films from a novel Al(CH3)2Cl precursor and H2O , 1997 .

[79]  J. Aarik,et al.  Morphology and structure of TiO2 thin films grown by atomic layer deposition , 1995 .

[80]  Y. Mei,et al.  Tubular oxide microcavity with high-index-contrast walls: Mie scattering theory and 3D confinement of resonant modes. , 2012, Optics express.

[81]  Ivan Avrutsky,et al.  Optical properties of Al2O3 thin films grown by atomic layer deposition. , 2009, Applied optics.

[82]  T. Jaaskelainen,et al.  Replication of sub‐micron features using amorphous thermoplastics , 2002 .

[84]  Robert Magnusson,et al.  Resonant Photonic Biosensors with Polarization-Based Multiparametric Discrimination in Each Channel , 2011, Sensors.

[85]  Jari Turunen,et al.  HSQ resist for replication stamp in polymers , 2012, Other Conferences.

[86]  Klaus Bange,et al.  Correlation between the density of TiO2 films and their properties , 1996 .

[87]  H. Herzig Micro-Optics : Elements, Systems And Applications , 1997 .

[88]  Safa Kasap,et al.  Springer Handbook of Electronic and Photonic Materials , 2007 .

[89]  Muhammad Saleem,et al.  Thermal properties of TiO2 films grown by atomic layer deposition , 2012 .

[90]  Hong Wei,et al.  Plasmonics in composite nanostructures , 2014 .

[91]  D. Schmeißer,et al.  Quantum size effects in TiO2 thin films grown by atomic layer deposition , 2014, Beilstein journal of nanotechnology.

[92]  Elton Graugnard,et al.  Atomic layer deposition in porous structures: 3D photonic crystals , 2005 .

[93]  S. Bedair Atomic layer epitaxy deposition processes , 1994 .

[94]  T. Chinowsky,et al.  Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films , 1998 .

[95]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[96]  M. B. Khan,et al.  Towards athermal organic-inorganic guided mode resonance filters. , 2011, Optics express.

[97]  Michael James,et al.  Atomic layer deposition of TiO2 / Al2O3 films for optical applications , 2005, SPIE Optics + Photonics.

[98]  E. Spiller,et al.  Totally reflecting thin-film phase retarders. , 1984, Applied optics.

[99]  T. Ebbesen,et al.  Optical transmission in perforated noble and transition metal films , 2006 .

[100]  Zhong Lin Wang,et al.  Controlled replication of butterfly wings for achieving tunable photonic properties. , 2006, Nano letters.

[101]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[102]  T. C. Anthony,et al.  Electrical properties of CdTe films and junctions , 1985 .

[103]  Carl P. Tripp,et al.  Template‐Assisted Fabrication of Dense, Aligned Arrays of Titania Nanotubes with Well‐Controlled Dimensions on Substrates , 2004 .

[104]  Helmut Schift,et al.  Hot embossing in polymers as a direct way to pattern resist , 1998 .

[105]  J. Aarik,et al.  Effect of crystal structure on optical properties of TiO2 films grown by atomic layer deposition , 1997 .

[106]  M. Kuittinen,et al.  Replicable one-dimensional non-polarizing guided mode resonance gratings under normal incidence , 2012 .

[107]  Muhammad Saleem,et al.  Thermo-optic coefficient of Ormocomp and comparison of polymer materials in athermal replicated subwavelength resonant waveguide gratings , 2013 .

[108]  Tio 2 Inverse Opals Fabricated Using Low-temperature Atomic Layer Deposition** , .

[109]  Arrelaine A. Dameron,et al.  Gas diffusion ultrabarriers on polymer substrates using Al2O3 atomic layer deposition and SiN plasma-enhanced chemical vapor deposition , 2009 .

[110]  R. Wood,et al.  On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum , 1902 .

[111]  Wei Zhang,et al.  Sub-10 nm imprint lithography and applications , 1997, 1997 55th Annual Device Research Conference Digest.

[112]  Y. Mei,et al.  Modification and Resonance Tuning of Optical Microcavities by Atomic Layer Deposition , 2014 .

[113]  S. George,et al.  Optimization and Structural Characterization of W/Al2O3 Nanolaminates Grown Using Atomic Layer Deposition Techniques , 2005 .

[114]  Ming L. Yu,et al.  Mechanisms of atomic layer epitaxy of GaAs , 1993 .

[115]  J. Aarik,et al.  Effect of growth conditions on formation of TiO2-II thin films in atomic layer deposition process , 1997 .

[116]  K Knop,et al.  Diffraction gratings for color filtering in the zero diffraction order. , 1978, Applied optics.

[117]  Jari Turunen,et al.  Determination of thermo-optic properties of atomic layer deposited thin TiO2 films for athermal resonant waveguide gratings by spectroscopic ellipsometry , 2014, Photonics Europe.

[118]  Mato Knez,et al.  Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition , 2007 .