Gravitational self-force in extreme mass-ratio inspirals

This review is concerned with the gravitational self-force acting on a mass particle in orbit around a large black hole. Renewed interest in this old problem is driven by the prospects of detecting gravitational waves from strongly gravitating binaries with extreme mass ratios. We begin here with a summary of recent advances in the theory of gravitational self-interaction in curved spacetime, and proceed to survey some of the ideas and computational strategies devised for implementing this theory in the case of a particle orbiting a Kerr black hole. We review in detail two of these methods: (i) the standard mode-sum method, in which the metric perturbation is regularized mode-by-mode in a multipole decomposition, and (ii) m-mode regularization, whereby individual azimuthal modes of the metric perturbation are regularized in 2+1 dimensions. We discuss several practical issues that arise, including the choice of gauge, the numerical representation of the particle singularity, and how high-frequency contributions near the particle are dealt with in frequency-domain calculations. As an example of a full end-to-end implementation of the mode-sum method, we discuss the computation of the gravitational self-force for eccentric geodesic orbits in Schwarzschild, using a direct integration of the Lorenz-gauge perturbation equations in the time domain. With the computational framework now in place, researchers have recently turned to explore the physical consequences of the gravitational self-force; we will describe some preliminary results in this area. An appendix to this review presents, for the first time, a detailed derivation of the ‘regularization parameters’ necessary for implementing the mode-sum method in Kerr spacetime.

[1]  J. Thornburg Adaptive mesh refinement for characteristic grids , 2009, 0909.0036.

[2]  E. Poisson,et al.  The Motion of Point Particles in Curved Spacetime , 2003, Living reviews in relativity.

[3]  B. Whiting,et al.  Mass and motion in general relativity , 2011 .

[4]  N. Sago,et al.  Gravitational self-force on a particle in eccentric orbit around a Schwarzschild black hole , 2010, 1002.2386.

[5]  P. Diener,et al.  Self-force with (3+1) codes: A primer for numerical relativists , 2009, 0908.2138.

[6]  R. Wald,et al.  Derivation of Gravitational Self-Force , 2009, 0907.0414.

[7]  Jonathan R. Gair,et al.  Influence of conservative corrections on parameter estimation for extreme-mass-ratio inspirals , 2009 .

[8]  P. Canizares,et al.  Efficient pseudospectral method for the computation of the self-force on a charged particle: Circular geodesics around a Schwarzschild black hole , 2009, 0903.0505.

[9]  A. Ottewill,et al.  Self-Force Calculations with Matched Expansions and Quasinormal Mode Sums , 2009, 0903.0395.

[10]  E. Sterl Phinney,et al.  Probing Stellar Dynamics in Galactic Nuclei , 2009 .

[11]  M. Berndtson Harmonic gauge perturbations of the Schwarzschild metric , 2009, 0904.0033.

[12]  T. Prince The Promise of Low-Frequency Gravitational Wave Astronomy , 2009, 0903.0103.

[13]  B. Schutz,et al.  Will Einstein Have the Last Word on Gravity , 2009, 0903.0100.

[14]  J. Gair,et al.  An algorithm for the detection of extreme mass ratio inspirals in LISA data , 2009, 0902.4133.

[15]  Jan S. Hesthaven,et al.  Discontinuous Galerkin method for computing gravitational waveforms from extreme mass ratio binaries , 2009, 0902.1287.

[16]  N. Sago,et al.  Gravitational self-force correction to the innermost stable circular orbit of a Schwarzschild black hole. , 2009, Physical review letters.

[17]  José A. González,et al.  B lack-hole binary sim ulations: the m ass ratio 10:1 , 2008, 0811.3952.

[18]  J. Gair Probing black holes at low redshift using LISA EMRI observations , 2008, 0811.0188.

[19]  P. Canizares,et al.  Simulations of Extreme-Mass-Ratio Inspirals Using Pseudospectral Methods , 2008, 0811.0294.

[20]  N. Sago,et al.  Two approaches for the gravitational self force in black hole spacetime: Comparison of numerical results , 2008, 0810.2530.

[21]  Frequency-domain calculation of the self-force : The high-frequency problem and its resolution , 2008, 0808.2315.

[22]  R. Wald,et al.  A rigorous derivation of gravitational self-force , 2008, 0806.3293.

[23]  T. Hinderer,et al.  Two timescale analysis of extreme mass ratio inspirals in Kerr. I. Orbital Motion , 2008, 0805.3337.

[24]  S. Detweiler Consequence of the gravitational self-force for circular orbits of the Schwarzschild geometry , 2008, 0804.3529.

[25]  B. Hu,et al.  Erratum: Self-force on a scalar charge in radial infall from rest using the Hadamard-WKB expansion [Phys. Rev. D 73, 064023 (2006)] , 2008 .

[26]  D. Kennefick,et al.  Computational Efficiency of Frequency- and Time-Domain Calculations of Extreme Mass-Ratio Binaries: Equatorial Orbits , 2008, 0804.1075.

[27]  P. Sundararajan Transition from adiabatic inspiral to geodesic plunge for a compact object around a massive Kerr black hole: Generic orbits , 2008, 0803.4482.

[28]  Gaurav Khanna,et al.  Towards adiabatic waveforms for inspiral into Kerr black holes. II. Dynamical sources and generic orbits , 2008, 0803.0317.

[29]  C. Lousto,et al.  A new method to integrate (2+1)-wave equations with Dirac's delta functions as sources , 2008, 0801.2750.

[30]  S. Detweiler,et al.  Regularization of fields for self-force problems in curved spacetime: Foundations and a time-domain application , 2007, 0712.4405.

[31]  L. Rezzolla,et al.  Influence of the hydrodynamic drag from an accretion torus on extreme mass-ratio inspirals , 2007, 0711.4558.

[32]  Y. Mino Modulation of the gravitational waveform by the effect of radiation reaction , 2007, 0711.3007.

[33]  A. Ottewill,et al.  Quasilocal contribution to the scalar self-force: Geodesic motion , 2007, 0711.2469.

[34]  J. Gair,et al.  Improved time–frequency analysis of extreme-mass-ratio inspiral signals in mock LISA data , 2007, 0710.5250.

[35]  E. Poisson,et al.  Multiscale analysis of the electromagnetic self-force in a weak gravitational field , 2007, 0708.3037.

[36]  E. Poisson,et al.  Osculating orbits in Schwarzschild spacetime, with an application to extreme mass-ratio inspirals , 2007, 0708.3033.

[37]  J. Gair,et al.  Observable properties of orbits in exact bumpy spacetimes , 2007, 0708.0628.

[38]  L. Price,et al.  Summary of session B3: analytic approximations, perturbation methods and their applications , 2007, 0710.5658.

[39]  N. Sago,et al.  m-mode regularization scheme for the self-force in Kerr spacetime , 2007, 0709.4588.

[40]  B. Hu,et al.  Erratum: Radiation reaction in Schwarzschild spacetime: Retarded Green’s function via Hadamard-WKB expansion [Phys. Rev. D69, 064039 (2004)] , 2007 .

[41]  L. Barack,et al.  Scalar-field perturbations from a particle orbiting a black hole using numerical evolution in 2+1 dimensions , 2007, 0705.3620.

[42]  R. Haas Scalar self-force on eccentric geodesics in Schwarzschild spacetime: A time-domain computation , 2007, 0704.0797.

[43]  Jonathan R. Gair,et al.  Intermediate and extreme mass-ratio inspirals—astrophysics, science applications and detection using LISA , 2007, astro-ph/0703495.

[44]  S. Hughes,et al.  Towards adiabatic waveforms for inspiral into Kerr black holes: A new model of the source for the time domain perturbation equation , 2007, gr-qc/0703028.

[45]  H. Nakano,et al.  Adiabatic Evolution of Three ‘Constants’ of Motion for Greatly Inclined Orbits in Kerr Spacetime , 2007, gr-qc/0702054.

[46]  C. Cutler,et al.  Using LISA extreme-mass-ratio inspiral sources to test off-Kerr deviations in the geometry of massive black holes , 2006, gr-qc/0612029.

[47]  L. Burko,et al.  Accurate time-domain gravitational waveforms for extreme-mass-ratio binaries , 2006, gr-qc/0609002.

[48]  C. Hopman,et al.  Astrophysics of extreme mass ratio inspiral sources , 2006, astro-ph/0608460.

[49]  R. Haas,et al.  Mode-sum regularization of the scalar self-force: Formulation in terms of a tetrad decomposition of the singular field , 2006, gr-qc/0605077.

[50]  S. Drasco Strategies for observing extreme mass ratio inspirals , 2006, gr-qc/0604115.

[51]  A. Wiseman,et al.  Self-force in a gauge appropriate to separable wave equations , 2006, gr-qc/0611072.

[52]  Y. Mino Adiabatic Expansion for a Metric Perturbation and the Condition to Solve the Gauge Problem for the Gravitational Radiation Reaction Problem , 2006, gr-qc/0601019.

[53]  P. Laguna,et al.  Finite element computation of the gravitational radiation emitted by a pointlike object orbiting a nonrotating black hole , 2005, gr-qc/0512028.

[54]  Dae-Il Choi,et al.  Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.

[55]  Y. Zlochower,et al.  Accurate evolutions of orbiting black-hole binaries without excision. , 2005, Physical review letters.

[56]  J. Gair,et al.  Improved approximate inspirals of test bodies into Kerr black holes , 2005, gr-qc/0510129.

[57]  S. Hughes,et al.  Gravitational wave snapshots of generic extreme mass ratio inspirals , 2005, gr-qc/0509101.

[58]  Takahiro Tanaka Gravitational Radiation Reaction , 2005, gr-qc/0508114.

[59]  B. Hu,et al.  Self-force on a scalar charge in radial infall from rest using the Hadamard-WKB expansion , 2005, gr-qc/0507067.

[60]  H. Nakano,et al.  Adiabatic Evolution of Orbital Parameters in Kerr Spacetime , 2005, gr-qc/0511151.

[61]  C. Lousto,et al.  Perturbations of Schwarzschild black holes in the Lorenz gauge: Formulation and numerical implementation , 2005, gr-qc/0510019.

[62]  E. Poisson,et al.  Limitations of the adiabatic approximation to the gravitational self-force , 2005, gr-qc/0509122.

[63]  C. Lousto Gravitational Radiation from Binary Black Holes: Advances in the Perturbative Approach , 2005 .

[64]  Jinchao Xu,et al.  A toy model for testing finite element methods to simulate extreme-mass-ratio binary systems , 2005, gr-qc/0507112.

[65]  F. Pretorius Evolution of binary black-hole spacetimes. , 2005, Physical review letters.

[66]  W. Anderson,et al.  A matched expansion approach to practical self-force calculations , 2005, gr-qc/0506136.

[67]  H. Nakano,et al.  Adiabatic Radiation Reaction to Orbits in Kerr Spacetime , 2005, gr-qc/0506092.

[68]  Y. Mino From the self-force problem to the radiation reaction formula , 2005, gr-qc/0506002.

[69]  S. Hughes,et al.  Computing inspirals in Kerr in the adiabatic regime: I. The scalar case , 2005, gr-qc/0505075.

[70]  I. Hinder,et al.  Constraint damping in the Z4 formulation and harmonic gauge , 2005, gr-qc/0504114.

[71]  S. Hughes,et al.  Gravitational radiation reaction and inspiral waveforms in the adiabatic limit. , 2005, Physical review letters.

[72]  Carlos O. Lousto,et al.  A time-domain fourth-order-convergent numerical algorithm to integrate black hole perturbations in the extreme-mass-ratio limit , 2005, gr-qc/0503001.

[73]  S. Detweiler Perspective on gravitational self-force analyses , 2005, gr-qc/0501004.

[74]  W. Anderson,et al.  Quasilocal contribution to the gravitational self-force , 2004, gr-qc/0412009.

[75]  R. Haas,et al.  Mass change and motion of a scalar charge in cosmological spacetimes , 2004, gr-qc/0411108.

[76]  H. Nakano,et al.  A New Analytical Method for Self-Force Regularization. II — Testing the Efficiency for Circular Orbits — , 2004, gr-qc/0410115.

[77]  C. Lousto,et al.  Numerical integration of the Teukolsky equation in the time domain , 2004, gr-qc/0409065.

[78]  E. Poisson The Gravitational self-force , 2004, gr-qc/0410127.

[79]  B. Whiting,et al.  Scalar field self-force effects on orbits about a Schwarzschild black hole , 2004, gr-qc/0410011.

[80]  C. Cutler,et al.  Confusion Noise from LISA Capture Sources , 2004, gr-qc/0409010.

[81]  E. Poisson TOPICAL REVIEW: Radiation reaction of point particles in curved spacetime , 2004 .

[82]  E. Poisson Absorption of mass and angular momentum by a black hole: Time-domain formalisms for gravitational perturbations, and the small-hole or slow-motion approximation , 2004, gr-qc/0407050.

[83]  E. Phinney,et al.  Event Rate Estimates for LISA Extreme Mass Ratio Capture Sources , 2004, gr-qc/0405137.

[84]  S. Hughes,et al.  Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits , 2004, gr-qc/0402063.

[85]  S. Detweiler,et al.  Low multipole contributions to the gravitational self-force , 2003, gr-qc/0312010.

[86]  K. Martel Gravitational waveforms from a point particle orbiting a Schwarzschild black hole , 2003, gr-qc/0311017.

[87]  Curt Cutler,et al.  LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy , 2003, gr-qc/0310125.

[88]  G. Khanna Teukolsky evolution of particle orbits around Kerr black holes in the time domain: Elliptic and inclined orbits , 2003, gr-qc/0309107.

[89]  B. Hu,et al.  Radiation reaction in Schwarzschild spacetime: Retarded Green's function via Hadamard-WKB expansion , 2003, gr-qc/0308034.

[90]  H. Nakano,et al.  A New Analytical Method for Self-Force Regularization. I — Charged Scalar Particles in Schwarzschild Spacetime — , 2003, gr-qc/0308068.

[91]  H. Nakano,et al.  Gauge problem in the gravitational self-force: First post-Newtonian force in the Regge-Wheeler gauge , 2003, gr-qc/0308027.

[92]  J. Pullin,et al.  Perturbative evolution of particle orbits around Kerr black holes: time-domain calculation , 2003, gr-qc/0303054.

[93]  Y. Mino Perturbative approach to an orbital evolution around a supermassive black hole , 2003, gr-qc/0302075.

[94]  S. Husa,et al.  A numerical relativistic model of a massive particle in orbit near a Schwarzschild black hole , 2003, gr-qc/0301060.

[95]  A. Ori,et al.  Gravitational self-force on a particle orbiting a Kerr black hole. , 2002, Physical review letters.

[96]  R. O’Shaughnessy Transition from inspiral to plunge for eccentric equatorial Kerr orbits , 2002, gr-qc/0211023.

[97]  B. Iyer,et al.  Third post-Newtonian dynamics of compact binaries: equations of motion in the centre-of-mass frame , 2002, gr-qc/0209089.

[98]  A. Ori,et al.  Regularization parameters for the self force in Schwarzschild spacetime: II. gravitational and electromagnetic cases , 2002, gr-qc/0209072.

[99]  H. Nakano,et al.  Gauge problem in the gravitational self-force: Harmonic gauge approach in the Schwarzschild background , 2002, gr-qc/0208060.

[100]  A. Ori Reconstruction of inhomogeneous metric perturbations and electromagnetic four-potential in Kerr spacetime , 2002, gr-qc/0207045.

[101]  B. Whiting,et al.  Self-force of a scalar field for circular orbits about a Schwarzschild black hole , 2002, gr-qc/0205079.

[102]  B. Whiting,et al.  Self force via a Green's function decomposition , 2002, gr-qc/0202086.

[103]  C. Lousto,et al.  Computing the gravitational self-force on a compact object plunging into a Schwarzschild black hole , 2002 .

[104]  A. Ori,et al.  Regularization parameters for the self-force in Schwarzschild spacetime: scalar case , 2002, gr-qc/0204093.

[105]  D. Kennefick,et al.  Zoom and whirl: Eccentric equatorial orbits around spinning black holes and their evolution under gravitational radiation reaction , 2002, gr-qc/0203086.

[106]  L. Burko,et al.  Mass loss by a scalar charge in an expanding universe , 2002, gr-qc/0201020.

[107]  Covariant self-force regularization of a particle orbiting a Schwarzschild black hole: Mode decomposition regularization , 2001, gr-qc/0111074.

[108]  H. Nakano,et al.  Calculating the gravitational self-force in Schwarzschild spacetime. , 2001, Physical review letters.

[109]  E. Poisson,et al.  A One-Parameter Family of Time-Symmetric Initial Data for the Radial Infall of a Particle into a Schwarzschild Black Hole , 2001, gr-qc/0107104.

[110]  E. Poisson,et al.  Scalar, electromagnetic, and gravitational self-forces in weakly curved spacetimes , 2000, gr-qc/0012057.

[111]  L. Blanchet Innermost circular orbit of binary black holes at the third post-Newtonian approximation , 2001, gr-qc/0112056.

[112]  A. Ori,et al.  Gravitational self-force and gauge transformations , 2001, gr-qc/0107056.

[113]  Gravitational self force by mode sum regularization , 2001, gr-qc/0105040.

[114]  H. Nakano,et al.  Self-Force on a Scalar Charge in Circular Orbit around a Schwarzschild Black Hole , 2001, gr-qc/0104012.

[115]  L. Burko,et al.  Self-force on a scalar charge in the spacetime of a stationary, axisymmetric black hole , 2001, gr-qc/0103008.

[116]  Erratum: Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational-wave emission [Phys. Rev. D 61, 084004 (2000)] , 2001 .

[117]  S. Detweiler Radiation reaction and the self-force for a point mass in general relativity. , 2000, Physical review letters.

[118]  H. Nakano,et al.  The Gravitational Reaction Force on a Particle in the Schwarzschild Background , 2000, gr-qc/0010036.

[119]  Y. Soen,et al.  Self-force on charges in the spacetime of spherical shells , 2000, gr-qc/0008065.

[120]  L. Burko,et al.  Radiation-reaction force on a particle plunging into a black hole , 2000, gr-qc/0007033.

[121]  L. Barack Self-force on a scalar particle in spherically symmetric spacetime via mode-sum regularization: Radial trajectories , 2000, gr-qc/0005042.

[122]  T. Quinn Axiomatic approach to radiation reaction of scalar point particles in curved spacetime , 2000, gr-qc/0005030.

[123]  T. Damour,et al.  Determination of the last stable orbit for circular general relativistic binaries at the third post-Newtonian approximation , 2000, gr-qc/0005034.

[124]  Burko Self-force on a particle in orbit around a black hole , 2000, Physical review letters.

[125]  S. Hughes Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational-wave emission. II. Inspiral trajectories and gravitational waveforms , 2000, gr-qc/0104041.

[126]  A. Ori,et al.  Transition from inspiral to plunge for a compact body in a circular equatorial orbit around a massive, spinning black hole , 2000, gr-qc/0003032.

[127]  A. Wiseman Self-force on a static scalar test charge outside a Schwarzschild black hole , 2000, gr-qc/0001025.

[128]  T. Damour,et al.  Transition from inspiral to plunge in binary black hole coalescences , 2000, gr-qc/0001013.

[129]  Loustó Pragmatic approach to gravitational radiation reaction in binary black holes , 1999, Physical review letters.

[130]  A. Ori,et al.  Mode sum regularization approach for the self-force in black hole spacetime , 1999, gr-qc/9912010.

[131]  L. Burko Self-force on static charges in Schwarzschild spacetime , 1999, gr-qc/9911042.

[132]  H. Nakano,et al.  Regularization Method of Gravitational Radiation Reaction , 1998 .

[133]  R. Price,et al.  Understanding initial data for black hole collisions , 1997, gr-qc/9705071.

[134]  A. Ori Radiative evolution of the Carter constant for generic orbits around a Kerr black hole , 1997 .

[135]  Takahiro Tanaka,et al.  Gravitational Radiation Reaction , 1997, gr-qc/9712056.

[136]  P. Laguna,et al.  Dynamics of perturbations of rotating black holes , 1997, gr-qc/9702048.

[137]  R. Wald,et al.  Axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime , 1996, gr-qc/9610053.

[138]  Takahiro Tanaka,et al.  Gravitational radiation reaction to a particle motion , 1996, gr-qc/9606018.

[139]  Papadopoulos,et al.  Dynamics of scalar fields in the background of rotating black holes. , 1996, Physical review. D, Particles and fields.

[140]  E. Poisson Erratum and Addendum: Gravitational radiation from a particle in circular orbit around a black hole. VI. Accuracy of the post-Newtonian expansion , 1997 .

[141]  Poisson,et al.  Gravitational radiation from a particle in circular orbit around a black hole. VI. Accuracy of the post-Newtonian expansion. , 1995, Physical review. D, Particles and fields.

[142]  J. H. Wright,et al.  Advanced Modern Engineering Mathematics , 1993 .

[143]  R. Geroch,et al.  Strings and other distributional sources in general relativity. , 1987, Physical review. D, Particles and fields.

[144]  R. Wald Construction of Solutions of Gravitational, Electromagnetic, Or Other Perturbation Equations from Solutions of Decoupled Equations , 1978 .

[145]  P. Chrzanowski Vector potential and metric perturbations of a rotating black hole , 1975 .

[146]  Vincent Moncrief,et al.  Gravitational perturbations of spherically symmetric systems. I. The exterior problem , 1974 .

[147]  W. Press,et al.  Perturbations of a rotating black hole. III. Interaction of the hole with gravitational and electromagnetic radiation. , 1974 .

[148]  S. Teukolsky ROTATING BLACK HOLES: SEPARABLE WAVE EQUATIONS FOR GRAVITATIONAL AND ELECTROMAGNETIC PERTURBATIONS. , 1972 .

[149]  J. Hartle,et al.  Energy and angular momentum flow into a black hole , 1972 .

[150]  F. Zerilli,et al.  Tensor Harmonics in Canonical Form for Gravitational Radiation and Other Applications , 1970 .

[151]  F. Zerilli Gravitational field of a particle falling in a schwarzschild geometry analyzed in tensor harmonics , 1969 .

[152]  J. Hobbs A vierbein formalism of radiation damping , 1968 .

[153]  R. Isaacson Gravitational radiation in the limit of high frequency. II - Nonlinear terms and the effective stress tensor. , 1968 .

[154]  B. Dewitt,et al.  Radiation damping in a gravitational field , 1960 .

[155]  John Archibald Wheeler,et al.  Stability of a Schwarzschild singularity , 1957 .

[156]  Paul Adrien Maurice Dirac,et al.  Classical theory of radiating electrons , 1938 .