Gravitational self-force in extreme mass-ratio inspirals
暂无分享,去创建一个
[1] J. Thornburg. Adaptive mesh refinement for characteristic grids , 2009, 0909.0036.
[2] E. Poisson,et al. The Motion of Point Particles in Curved Spacetime , 2003, Living reviews in relativity.
[3] B. Whiting,et al. Mass and motion in general relativity , 2011 .
[4] N. Sago,et al. Gravitational self-force on a particle in eccentric orbit around a Schwarzschild black hole , 2010, 1002.2386.
[5] P. Diener,et al. Self-force with (3+1) codes: A primer for numerical relativists , 2009, 0908.2138.
[6] R. Wald,et al. Derivation of Gravitational Self-Force , 2009, 0907.0414.
[7] Jonathan R. Gair,et al. Influence of conservative corrections on parameter estimation for extreme-mass-ratio inspirals , 2009 .
[8] P. Canizares,et al. Efficient pseudospectral method for the computation of the self-force on a charged particle: Circular geodesics around a Schwarzschild black hole , 2009, 0903.0505.
[9] A. Ottewill,et al. Self-Force Calculations with Matched Expansions and Quasinormal Mode Sums , 2009, 0903.0395.
[10] E. Sterl Phinney,et al. Probing Stellar Dynamics in Galactic Nuclei , 2009 .
[11] M. Berndtson. Harmonic gauge perturbations of the Schwarzschild metric , 2009, 0904.0033.
[12] T. Prince. The Promise of Low-Frequency Gravitational Wave Astronomy , 2009, 0903.0103.
[13] B. Schutz,et al. Will Einstein Have the Last Word on Gravity , 2009, 0903.0100.
[14] J. Gair,et al. An algorithm for the detection of extreme mass ratio inspirals in LISA data , 2009, 0902.4133.
[15] Jan S. Hesthaven,et al. Discontinuous Galerkin method for computing gravitational waveforms from extreme mass ratio binaries , 2009, 0902.1287.
[16] N. Sago,et al. Gravitational self-force correction to the innermost stable circular orbit of a Schwarzschild black hole. , 2009, Physical review letters.
[17] José A. González,et al. B lack-hole binary sim ulations: the m ass ratio 10:1 , 2008, 0811.3952.
[18] J. Gair. Probing black holes at low redshift using LISA EMRI observations , 2008, 0811.0188.
[19] P. Canizares,et al. Simulations of Extreme-Mass-Ratio Inspirals Using Pseudospectral Methods , 2008, 0811.0294.
[20] N. Sago,et al. Two approaches for the gravitational self force in black hole spacetime: Comparison of numerical results , 2008, 0810.2530.
[21] Frequency-domain calculation of the self-force : The high-frequency problem and its resolution , 2008, 0808.2315.
[22] R. Wald,et al. A rigorous derivation of gravitational self-force , 2008, 0806.3293.
[23] T. Hinderer,et al. Two timescale analysis of extreme mass ratio inspirals in Kerr. I. Orbital Motion , 2008, 0805.3337.
[24] S. Detweiler. Consequence of the gravitational self-force for circular orbits of the Schwarzschild geometry , 2008, 0804.3529.
[25] B. Hu,et al. Erratum: Self-force on a scalar charge in radial infall from rest using the Hadamard-WKB expansion [Phys. Rev. D 73, 064023 (2006)] , 2008 .
[26] D. Kennefick,et al. Computational Efficiency of Frequency- and Time-Domain Calculations of Extreme Mass-Ratio Binaries: Equatorial Orbits , 2008, 0804.1075.
[27] P. Sundararajan. Transition from adiabatic inspiral to geodesic plunge for a compact object around a massive Kerr black hole: Generic orbits , 2008, 0803.4482.
[28] Gaurav Khanna,et al. Towards adiabatic waveforms for inspiral into Kerr black holes. II. Dynamical sources and generic orbits , 2008, 0803.0317.
[29] C. Lousto,et al. A new method to integrate (2+1)-wave equations with Dirac's delta functions as sources , 2008, 0801.2750.
[30] S. Detweiler,et al. Regularization of fields for self-force problems in curved spacetime: Foundations and a time-domain application , 2007, 0712.4405.
[31] L. Rezzolla,et al. Influence of the hydrodynamic drag from an accretion torus on extreme mass-ratio inspirals , 2007, 0711.4558.
[32] Y. Mino. Modulation of the gravitational waveform by the effect of radiation reaction , 2007, 0711.3007.
[33] A. Ottewill,et al. Quasilocal contribution to the scalar self-force: Geodesic motion , 2007, 0711.2469.
[34] J. Gair,et al. Improved time–frequency analysis of extreme-mass-ratio inspiral signals in mock LISA data , 2007, 0710.5250.
[35] E. Poisson,et al. Multiscale analysis of the electromagnetic self-force in a weak gravitational field , 2007, 0708.3037.
[36] E. Poisson,et al. Osculating orbits in Schwarzschild spacetime, with an application to extreme mass-ratio inspirals , 2007, 0708.3033.
[37] J. Gair,et al. Observable properties of orbits in exact bumpy spacetimes , 2007, 0708.0628.
[38] L. Price,et al. Summary of session B3: analytic approximations, perturbation methods and their applications , 2007, 0710.5658.
[39] N. Sago,et al. m-mode regularization scheme for the self-force in Kerr spacetime , 2007, 0709.4588.
[40] B. Hu,et al. Erratum: Radiation reaction in Schwarzschild spacetime: Retarded Green’s function via Hadamard-WKB expansion [Phys. Rev. D69, 064039 (2004)] , 2007 .
[41] L. Barack,et al. Scalar-field perturbations from a particle orbiting a black hole using numerical evolution in 2+1 dimensions , 2007, 0705.3620.
[42] R. Haas. Scalar self-force on eccentric geodesics in Schwarzschild spacetime: A time-domain computation , 2007, 0704.0797.
[43] Jonathan R. Gair,et al. Intermediate and extreme mass-ratio inspirals—astrophysics, science applications and detection using LISA , 2007, astro-ph/0703495.
[44] S. Hughes,et al. Towards adiabatic waveforms for inspiral into Kerr black holes: A new model of the source for the time domain perturbation equation , 2007, gr-qc/0703028.
[45] H. Nakano,et al. Adiabatic Evolution of Three ‘Constants’ of Motion for Greatly Inclined Orbits in Kerr Spacetime , 2007, gr-qc/0702054.
[46] C. Cutler,et al. Using LISA extreme-mass-ratio inspiral sources to test off-Kerr deviations in the geometry of massive black holes , 2006, gr-qc/0612029.
[47] L. Burko,et al. Accurate time-domain gravitational waveforms for extreme-mass-ratio binaries , 2006, gr-qc/0609002.
[48] C. Hopman,et al. Astrophysics of extreme mass ratio inspiral sources , 2006, astro-ph/0608460.
[49] R. Haas,et al. Mode-sum regularization of the scalar self-force: Formulation in terms of a tetrad decomposition of the singular field , 2006, gr-qc/0605077.
[50] S. Drasco. Strategies for observing extreme mass ratio inspirals , 2006, gr-qc/0604115.
[51] A. Wiseman,et al. Self-force in a gauge appropriate to separable wave equations , 2006, gr-qc/0611072.
[52] Y. Mino. Adiabatic Expansion for a Metric Perturbation and the Condition to Solve the Gauge Problem for the Gravitational Radiation Reaction Problem , 2006, gr-qc/0601019.
[53] P. Laguna,et al. Finite element computation of the gravitational radiation emitted by a pointlike object orbiting a nonrotating black hole , 2005, gr-qc/0512028.
[54] Dae-Il Choi,et al. Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.
[55] Y. Zlochower,et al. Accurate evolutions of orbiting black-hole binaries without excision. , 2005, Physical review letters.
[56] J. Gair,et al. Improved approximate inspirals of test bodies into Kerr black holes , 2005, gr-qc/0510129.
[57] S. Hughes,et al. Gravitational wave snapshots of generic extreme mass ratio inspirals , 2005, gr-qc/0509101.
[58] Takahiro Tanaka. Gravitational Radiation Reaction , 2005, gr-qc/0508114.
[59] B. Hu,et al. Self-force on a scalar charge in radial infall from rest using the Hadamard-WKB expansion , 2005, gr-qc/0507067.
[60] H. Nakano,et al. Adiabatic Evolution of Orbital Parameters in Kerr Spacetime , 2005, gr-qc/0511151.
[61] C. Lousto,et al. Perturbations of Schwarzschild black holes in the Lorenz gauge: Formulation and numerical implementation , 2005, gr-qc/0510019.
[62] E. Poisson,et al. Limitations of the adiabatic approximation to the gravitational self-force , 2005, gr-qc/0509122.
[63] C. Lousto. Gravitational Radiation from Binary Black Holes: Advances in the Perturbative Approach , 2005 .
[64] Jinchao Xu,et al. A toy model for testing finite element methods to simulate extreme-mass-ratio binary systems , 2005, gr-qc/0507112.
[65] F. Pretorius. Evolution of binary black-hole spacetimes. , 2005, Physical review letters.
[66] W. Anderson,et al. A matched expansion approach to practical self-force calculations , 2005, gr-qc/0506136.
[67] H. Nakano,et al. Adiabatic Radiation Reaction to Orbits in Kerr Spacetime , 2005, gr-qc/0506092.
[68] Y. Mino. From the self-force problem to the radiation reaction formula , 2005, gr-qc/0506002.
[69] S. Hughes,et al. Computing inspirals in Kerr in the adiabatic regime: I. The scalar case , 2005, gr-qc/0505075.
[70] I. Hinder,et al. Constraint damping in the Z4 formulation and harmonic gauge , 2005, gr-qc/0504114.
[71] S. Hughes,et al. Gravitational radiation reaction and inspiral waveforms in the adiabatic limit. , 2005, Physical review letters.
[72] Carlos O. Lousto,et al. A time-domain fourth-order-convergent numerical algorithm to integrate black hole perturbations in the extreme-mass-ratio limit , 2005, gr-qc/0503001.
[73] S. Detweiler. Perspective on gravitational self-force analyses , 2005, gr-qc/0501004.
[74] W. Anderson,et al. Quasilocal contribution to the gravitational self-force , 2004, gr-qc/0412009.
[75] R. Haas,et al. Mass change and motion of a scalar charge in cosmological spacetimes , 2004, gr-qc/0411108.
[76] H. Nakano,et al. A New Analytical Method for Self-Force Regularization. II — Testing the Efficiency for Circular Orbits — , 2004, gr-qc/0410115.
[77] C. Lousto,et al. Numerical integration of the Teukolsky equation in the time domain , 2004, gr-qc/0409065.
[78] E. Poisson. The Gravitational self-force , 2004, gr-qc/0410127.
[79] B. Whiting,et al. Scalar field self-force effects on orbits about a Schwarzschild black hole , 2004, gr-qc/0410011.
[80] C. Cutler,et al. Confusion Noise from LISA Capture Sources , 2004, gr-qc/0409010.
[81] E. Poisson. TOPICAL REVIEW: Radiation reaction of point particles in curved spacetime , 2004 .
[82] E. Poisson. Absorption of mass and angular momentum by a black hole: Time-domain formalisms for gravitational perturbations, and the small-hole or slow-motion approximation , 2004, gr-qc/0407050.
[83] E. Phinney,et al. Event Rate Estimates for LISA Extreme Mass Ratio Capture Sources , 2004, gr-qc/0405137.
[84] S. Hughes,et al. Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits , 2004, gr-qc/0402063.
[85] S. Detweiler,et al. Low multipole contributions to the gravitational self-force , 2003, gr-qc/0312010.
[86] K. Martel. Gravitational waveforms from a point particle orbiting a Schwarzschild black hole , 2003, gr-qc/0311017.
[87] Curt Cutler,et al. LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy , 2003, gr-qc/0310125.
[88] G. Khanna. Teukolsky evolution of particle orbits around Kerr black holes in the time domain: Elliptic and inclined orbits , 2003, gr-qc/0309107.
[89] B. Hu,et al. Radiation reaction in Schwarzschild spacetime: Retarded Green's function via Hadamard-WKB expansion , 2003, gr-qc/0308034.
[90] H. Nakano,et al. A New Analytical Method for Self-Force Regularization. I — Charged Scalar Particles in Schwarzschild Spacetime — , 2003, gr-qc/0308068.
[91] H. Nakano,et al. Gauge problem in the gravitational self-force: First post-Newtonian force in the Regge-Wheeler gauge , 2003, gr-qc/0308027.
[92] J. Pullin,et al. Perturbative evolution of particle orbits around Kerr black holes: time-domain calculation , 2003, gr-qc/0303054.
[93] Y. Mino. Perturbative approach to an orbital evolution around a supermassive black hole , 2003, gr-qc/0302075.
[94] S. Husa,et al. A numerical relativistic model of a massive particle in orbit near a Schwarzschild black hole , 2003, gr-qc/0301060.
[95] A. Ori,et al. Gravitational self-force on a particle orbiting a Kerr black hole. , 2002, Physical review letters.
[96] R. O’Shaughnessy. Transition from inspiral to plunge for eccentric equatorial Kerr orbits , 2002, gr-qc/0211023.
[97] B. Iyer,et al. Third post-Newtonian dynamics of compact binaries: equations of motion in the centre-of-mass frame , 2002, gr-qc/0209089.
[98] A. Ori,et al. Regularization parameters for the self force in Schwarzschild spacetime: II. gravitational and electromagnetic cases , 2002, gr-qc/0209072.
[99] H. Nakano,et al. Gauge problem in the gravitational self-force: Harmonic gauge approach in the Schwarzschild background , 2002, gr-qc/0208060.
[100] A. Ori. Reconstruction of inhomogeneous metric perturbations and electromagnetic four-potential in Kerr spacetime , 2002, gr-qc/0207045.
[101] B. Whiting,et al. Self-force of a scalar field for circular orbits about a Schwarzschild black hole , 2002, gr-qc/0205079.
[102] B. Whiting,et al. Self force via a Green's function decomposition , 2002, gr-qc/0202086.
[103] C. Lousto,et al. Computing the gravitational self-force on a compact object plunging into a Schwarzschild black hole , 2002 .
[104] A. Ori,et al. Regularization parameters for the self-force in Schwarzschild spacetime: scalar case , 2002, gr-qc/0204093.
[105] D. Kennefick,et al. Zoom and whirl: Eccentric equatorial orbits around spinning black holes and their evolution under gravitational radiation reaction , 2002, gr-qc/0203086.
[106] L. Burko,et al. Mass loss by a scalar charge in an expanding universe , 2002, gr-qc/0201020.
[107] Covariant self-force regularization of a particle orbiting a Schwarzschild black hole: Mode decomposition regularization , 2001, gr-qc/0111074.
[108] H. Nakano,et al. Calculating the gravitational self-force in Schwarzschild spacetime. , 2001, Physical review letters.
[109] E. Poisson,et al. A One-Parameter Family of Time-Symmetric Initial Data for the Radial Infall of a Particle into a Schwarzschild Black Hole , 2001, gr-qc/0107104.
[110] E. Poisson,et al. Scalar, electromagnetic, and gravitational self-forces in weakly curved spacetimes , 2000, gr-qc/0012057.
[111] L. Blanchet. Innermost circular orbit of binary black holes at the third post-Newtonian approximation , 2001, gr-qc/0112056.
[112] A. Ori,et al. Gravitational self-force and gauge transformations , 2001, gr-qc/0107056.
[113] Gravitational self force by mode sum regularization , 2001, gr-qc/0105040.
[114] H. Nakano,et al. Self-Force on a Scalar Charge in Circular Orbit around a Schwarzschild Black Hole , 2001, gr-qc/0104012.
[115] L. Burko,et al. Self-force on a scalar charge in the spacetime of a stationary, axisymmetric black hole , 2001, gr-qc/0103008.
[117] S. Detweiler. Radiation reaction and the self-force for a point mass in general relativity. , 2000, Physical review letters.
[118] H. Nakano,et al. The Gravitational Reaction Force on a Particle in the Schwarzschild Background , 2000, gr-qc/0010036.
[119] Y. Soen,et al. Self-force on charges in the spacetime of spherical shells , 2000, gr-qc/0008065.
[120] L. Burko,et al. Radiation-reaction force on a particle plunging into a black hole , 2000, gr-qc/0007033.
[121] L. Barack. Self-force on a scalar particle in spherically symmetric spacetime via mode-sum regularization: Radial trajectories , 2000, gr-qc/0005042.
[122] T. Quinn. Axiomatic approach to radiation reaction of scalar point particles in curved spacetime , 2000, gr-qc/0005030.
[123] T. Damour,et al. Determination of the last stable orbit for circular general relativistic binaries at the third post-Newtonian approximation , 2000, gr-qc/0005034.
[124] Burko. Self-force on a particle in orbit around a black hole , 2000, Physical review letters.
[125] S. Hughes. Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational-wave emission. II. Inspiral trajectories and gravitational waveforms , 2000, gr-qc/0104041.
[126] A. Ori,et al. Transition from inspiral to plunge for a compact body in a circular equatorial orbit around a massive, spinning black hole , 2000, gr-qc/0003032.
[127] A. Wiseman. Self-force on a static scalar test charge outside a Schwarzschild black hole , 2000, gr-qc/0001025.
[128] T. Damour,et al. Transition from inspiral to plunge in binary black hole coalescences , 2000, gr-qc/0001013.
[129] Loustó. Pragmatic approach to gravitational radiation reaction in binary black holes , 1999, Physical review letters.
[130] A. Ori,et al. Mode sum regularization approach for the self-force in black hole spacetime , 1999, gr-qc/9912010.
[131] L. Burko. Self-force on static charges in Schwarzschild spacetime , 1999, gr-qc/9911042.
[132] H. Nakano,et al. Regularization Method of Gravitational Radiation Reaction , 1998 .
[133] R. Price,et al. Understanding initial data for black hole collisions , 1997, gr-qc/9705071.
[134] A. Ori. Radiative evolution of the Carter constant for generic orbits around a Kerr black hole , 1997 .
[135] Takahiro Tanaka,et al. Gravitational Radiation Reaction , 1997, gr-qc/9712056.
[136] P. Laguna,et al. Dynamics of perturbations of rotating black holes , 1997, gr-qc/9702048.
[137] R. Wald,et al. Axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime , 1996, gr-qc/9610053.
[138] Takahiro Tanaka,et al. Gravitational radiation reaction to a particle motion , 1996, gr-qc/9606018.
[139] Papadopoulos,et al. Dynamics of scalar fields in the background of rotating black holes. , 1996, Physical review. D, Particles and fields.
[140] E. Poisson. Erratum and Addendum: Gravitational radiation from a particle in circular orbit around a black hole. VI. Accuracy of the post-Newtonian expansion , 1997 .
[141] Poisson,et al. Gravitational radiation from a particle in circular orbit around a black hole. VI. Accuracy of the post-Newtonian expansion. , 1995, Physical review. D, Particles and fields.
[142] J. H. Wright,et al. Advanced Modern Engineering Mathematics , 1993 .
[143] R. Geroch,et al. Strings and other distributional sources in general relativity. , 1987, Physical review. D, Particles and fields.
[144] R. Wald. Construction of Solutions of Gravitational, Electromagnetic, Or Other Perturbation Equations from Solutions of Decoupled Equations , 1978 .
[145] P. Chrzanowski. Vector potential and metric perturbations of a rotating black hole , 1975 .
[146] Vincent Moncrief,et al. Gravitational perturbations of spherically symmetric systems. I. The exterior problem , 1974 .
[147] W. Press,et al. Perturbations of a rotating black hole. III. Interaction of the hole with gravitational and electromagnetic radiation. , 1974 .
[148] S. Teukolsky. ROTATING BLACK HOLES: SEPARABLE WAVE EQUATIONS FOR GRAVITATIONAL AND ELECTROMAGNETIC PERTURBATIONS. , 1972 .
[149] J. Hartle,et al. Energy and angular momentum flow into a black hole , 1972 .
[150] F. Zerilli,et al. Tensor Harmonics in Canonical Form for Gravitational Radiation and Other Applications , 1970 .
[151] F. Zerilli. Gravitational field of a particle falling in a schwarzschild geometry analyzed in tensor harmonics , 1969 .
[152] J. Hobbs. A vierbein formalism of radiation damping , 1968 .
[153] R. Isaacson. Gravitational radiation in the limit of high frequency. II - Nonlinear terms and the effective stress tensor. , 1968 .
[154] B. Dewitt,et al. Radiation damping in a gravitational field , 1960 .
[155] John Archibald Wheeler,et al. Stability of a Schwarzschild singularity , 1957 .
[156] Paul Adrien Maurice Dirac,et al. Classical theory of radiating electrons , 1938 .