Experimental manifestation of redox-conductivity in metal-organic frameworks and its implication for semiconductor/insulator switching

[1]  C. Brozek,et al.  Solvent-controlled ion-coupled charge transport in microporous metal chalcogenides , 2022, Chemical science.

[2]  M. Dincǎ,et al.  Teaching Metal-Organic Frameworks to Conduct: Ion and Electron Transport in Metal-Organic Frameworks , 2022, Annual review of materials research (Print).

[3]  A. Castner,et al.  Microscopic Insights into Cation-Coupled Electron Hopping Transport in a Metal–Organic Framework , 2022, Journal of the American Chemical Society.

[4]  Christopher H. Hendon,et al.  Conductivity in Open-Framework Chalcogenides Tuned via Band Engineering and Redox Chemistry , 2022, Chemistry of Materials.

[5]  Christopher H. Hendon,et al.  Porous lanthanide metal–organic frameworks with metallic conductivity , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[6]  William R. Dichtel,et al.  Controlled n‐Doping of Naphthalene‐Diimide‐Based 2D Polymers , 2021, Advanced materials.

[7]  D. D’Alessandro,et al.  Redox-active ligands: Recent advances towards their incorporation into coordination polymers and metal-organic frameworks , 2021, Coordination Chemistry Reviews.

[8]  J. Gascón,et al.  Metal-Organic Frameworks: Molecules or Semiconductors in Photocatalysis? , 2021, Angewandte Chemie.

[9]  M. Dincǎ,et al.  Why conductivity is not always king - physical properties governing the capacitance of 2D metal-organic framework-based EDLC supercapacitor electrodes: a Ni3(HITP)2 case study. , 2021, Faraday discussions.

[10]  S. Choudhury,et al.  Valence-Dependent Electrical Conductivity in a 3D Tetrahydroxyquinone-Based Metal-Organic Framework. , 2020, Journal of the American Chemical Society.

[11]  S. Ott,et al.  Transport Phenomena: Challenges and Opportunities for Molecular Catalysis in Metal–Organic Frameworks , 2020, Journal of the American Chemical Society.

[12]  J. Hupp,et al.  Charge Transport in Zirconium-Based Metal-Organic Frameworks. , 2020, Accounts of chemical research.

[13]  C. Wilds,et al.  Conductive MOFs , 2016 .

[14]  Lilia S. Xie,et al.  Electrically Conductive Metal–Organic Frameworks , 2020, Chemical reviews.

[15]  A. Castner,et al.  Analysis of Electrocatalytic Metal-Organic Frameworks. , 2020, Coordination chemistry reviews.

[16]  A. Morris,et al.  Design Rules for Efficient Charge Transfer in Metal-organic Framework Films: The Pore Size Effect. , 2020, The journal of physical chemistry letters.

[17]  G. Mohammad-Pour,et al.  A solid-solution approach for redox active metal organic frameworks with tunable redox conductivity. , 2019, Journal of the American Chemical Society.

[18]  A. Walsh,et al.  Room Temperature Metallic Conductivity in a Metal-Organic Framework Induced by Oxidation. , 2019, Journal of the American Chemical Society.

[19]  X. Zou,et al.  Electrocatalytic Hydrogen Evolution from a Cobaloxime-Based Metal–Organic Framework Thin Film , 2019, Journal of the American Chemical Society.

[20]  E. Stavrinidou,et al.  Organic mixed ionic–electronic conductors , 2019, Nature Materials.

[21]  C. C. Epley,et al.  Independent Quantification of Electron and Ion Diffusion in Metal-Organic Frameworks Thin Films. , 2019, Journal of the American Chemical Society.

[22]  M. Yamashita,et al.  Porous Molecular Conductor: Electrochemical Fabrication of Through-Space Conduction Pathways among Linear Coordination Polymers. , 2019, Journal of the American Chemical Society.

[23]  Lei Sun,et al.  Reversible redox switching of magnetic order and electrical conductivity in a 2D manganese benzoquinoid framework , 2019, Chemical science.

[24]  Shao-En Lin,et al.  The role of redox hopping in metal-organic framework electrocatalysis. , 2018, Chemical communications.

[25]  Samia M. Hamed,et al.  Electron delocalization and charge mobility as a function of reduction in a metal–organic framework , 2018, Nature Materials.

[26]  Christopher H. Hendon,et al.  Tunable Mixed-Valence Doping toward Record Electrical Conductivity in a Three-Dimensional Metal-Organic Framework. , 2018, Journal of the American Chemical Society.

[27]  Seth M. Cohen,et al.  Development of a UiO-Type Thin Film Electrocatalysis Platform with Redox-Active Linkers. , 2018, Journal of the American Chemical Society.

[28]  Michael E. Ziebel,et al.  Control of Electronic Structure and Conductivity in Two-Dimensional Metal-Semiquinoid Frameworks of Titanium, Vanadium, and Chromium. , 2018, Journal of the American Chemical Society.

[29]  A. Walsh,et al.  Metallic Conductivity in a Two-Dimensional Cobalt Dithiolene Metal-Organic Framework. , 2017, Journal of the American Chemical Society.

[30]  M. Allendorf,et al.  An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors. , 2017, Chemical Society reviews.

[31]  Christopher H. Hendon,et al.  Grand Challenges and Future Opportunities for Metal–Organic Frameworks , 2017, ACS central science.

[32]  D. D’Alessandro Exploiting redox activity in metal-organic frameworks: concepts, trends and perspectives. , 2016, Chemical communications.

[33]  R. V. Van Duyne,et al.  Solid-State Redox Switching of Magnetic Exchange and Electronic Conductivity in a Benzoquinoid-Bridged Mn(II) Chain Compound. , 2016, Journal of the American Chemical Society.

[34]  J. Long,et al.  Electronic Conductivity, Ferrimagnetic Ordering, and Reductive Insertion Mediated by Organic Mixed-Valence in a Ferric Semiquinoid Metal-Organic Framework. , 2015, Journal of the American Chemical Society.

[35]  Christopher H. Hendon,et al.  Million-Fold Electrical Conductivity Enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E = S, O) , 2015, Journal of the American Chemical Society.

[36]  Alán Aspuru-Guzik,et al.  High electrical conductivity in Ni₃(2,3,6,7,10,11-hexaiminotriphenylene)₂, a semiconducting metal-organic graphene analogue. , 2014, Journal of the American Chemical Society.

[37]  Mircea Dincă,et al.  Facile deposition of multicolored electrochromic metal-organic framework thin films. , 2013, Angewandte Chemie.

[38]  M. Dincǎ,et al.  Postsynthetic tuning of hydrophilicity in pyrazolate MOFs to modulate water adsorption properties , 2013 .

[39]  G. Palmisano,et al.  Tuning the adsorption properties of isoreticular pyrazolate-based metal-organic frameworks through ligand modification. , 2012, Journal of the American Chemical Society.

[40]  D. D’Alessandro,et al.  Rapid determination of the optical and redox properties of a metal-organic framework via in situ solid state spectroelectrochemistry. , 2012, Chemical communications.

[41]  Mircea Dincă,et al.  Broadly hysteretic H2 adsorption in the microporous metal-organic framework Co(1,4-benzenedipyrazolate). , 2008, Journal of the American Chemical Society.

[42]  Nigel A. Surridge,et al.  Charge transport in electroactive polymers consisting of fixed molecular Redox sites , 1990 .

[43]  J. Hupp,et al.  Anisotropic Redox Conductivity within a Metal-Organic Framework Material. , 2019, Journal of the American Chemical Society.

[44]  R. Murray,et al.  Direct current redox versus electronic conductivity of the ladder polymer poly(benzimidazobenzophenanthroline) , 1988 .

[45]  R. Murray,et al.  Redox capacity and direct current electron conductivity in electroactive materials , 1986 .