ALGORITMA KLASIFIKASI NAIVE BAYES DAN SUPPORT VECTOR MACHINE DALAM LAYANAN KOMPLAIN MAHASISWA

Service in the world of education is an important element for the creation of an academic atmosphere that is conducive to the implementation of a successful teaching and learning process. The process of service to students there is a tendency to be implemented not following the minimum service standards that must be provided to students so that students tend to complain about the services provided. Submission of criticism, complaints, input, or suggestions for dissatisfaction and problems that exist in the university environment is still very limited. Complaints can be constructive if submitted to the right place and party. In this research the data processing of email complaints from students conducted at the academic student body (students.bsi.ac.id). Student complaint data that will be processed is data in the form of * .xls complaint file. Before text data is analyzed using text mining methods, the pre-processing text needs to be done including tokenizing, case folding, stopwords, and stemming. After pre-processing, the classification method is then performed in classifying each complaint category and dividing the status into two parts, namely complaint and not complaint so that the status becomes a normal condition in text mining research. The purpose of this study is to obtain the most accurate algorithm in the classification of student complaints and can find out the results of the classification of the Naive Bayes algorithm method and Support vector Machine used and compared. In this study, the results of testing by measuring the performance of these two algorithms using Cross-Validation, Confusion Matrix, and ROC Curves. The obtained Support vector Machine algorithm has the highest accuracy value compared to Naive Bayes. AUC value = 0.922. for the Support vector machine method using the student academic data collection dataset (students.bsi.ac.id) has 84.45%, from the Naive Bayes algorithm has an accuracy rate of about 69.75% and AUC value = 0.679.

[1]  Nurajijah Nurajijah,et al.  Algoritma Naïve Bayes, Decision Tree, dan SVM untuk Klasifikasi Persetujuan Pembiayaan Nasabah Koperasi Syariah , 2019, Jurnal Teknologi dan Sistem Komputer.

[2]  Z. Schwartz,et al.  What can big data and text analytics tell us about hotel guest experience and satisfaction , 2015 .

[3]  Siti Nur Asiyah,et al.  Klasifikasi Berita Online Menggunakan Metode Support Vector Machine dan K-Nearest Neighbor , 2016 .

[4]  Dwiza Riana,et al.  Komparasi Algoritma C4.5, Naïve Bayes Dan Neural Network Untuk Klasifikasi Tanah , 2017 .

[5]  Suyanto Data mining untuk klasifikasi dan klasterisasi data , 2017 .

[6]  Susi Indriyani,et al.  PENGARUH PENANGANAN KELUHAN (COMPLAINT HANDLING) TERHADAP KEPERCAYAAN DAN KOMITMEN MAHASISWA PADA PERGURUAN TINGGI SWASTA DI BANDAR LAMPUNG , 2016 .

[7]  Yuan Lukito,et al.  Implementasi Sistem Crowdsourced Labelling Berbasis Web dengan Metode Weighted Majority Voting , 2016 .

[8]  Amir Hamzah,et al.  KLASIFIKASI TEKS DENGAN NAÏVE BAYES CLASSIFIER (NBC) UNTUK PENGELOMPOKAN TEKS BERITA DAN ABSTRACT AKADEMIS , 2012 .

[9]  Hilda Rachmi Amik Bsi Bogor PENERAPAN PRINCIPAL COMPONENT ANALYSIS DAN GENETIC ALGORITHM PADA ANALISIS SENTIMEN REVIEW PENGIRIMAN BARANG MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE , 2017 .

[10]  Ir. Lukito Edi Nugroho,et al.  PENERAPAN ANALISIS SENTIMEN PADA TWITTER BERBAHASA INDONESIA SEBAGAI PEMBERI RATING , 2014 .

[11]  Karl Rihaczek,et al.  1. WHAT IS DATA MINING? , 2019, Data Mining for the Social Sciences.

[12]  Bambang Riyanto Trilaksono,et al.  Klasifikasi Topik Keluhan Pelanggan Berdasarkan Tweet dengan Menggunakan Penggabungan Feature Hasil Ekstraksi pada Metode Support Vector Machine (SVM) , 2015 .