Deformed Weyl–Heisenberg algebra and quantum decoherence effect

We study the dynamics of a catlike superposition of f-deformed coherent states under dissipative decoherence. For this purpose, we investigate two important categories of f-deformed coherent states: Gazeau–Klauder and displacement-type coherent states. In addition, we consider two deformation functions; one of them describes a harmonic oscillator in an infinite well and another corresponds to a harmonic oscillator in a quantum well with finite depth. The decoherence effects appeared through a dissipative interaction of the environment with the catlike states. In this study, we first show that the Gazeau–Klauder coherent state is more resistant under the decoherence process, in contrast to the displacement-type one, and second, that the potential range of the infinite well and the depth of potential possess a remarkable role in the decoherence process.

[1]  E. Curado,et al.  Structure of generalized Heisenberg algebras and quantum decoherence analysis , 2013 .

[2]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[3]  M. Tavassoly,et al.  Superposition of two nonlinear coherent states {π}/{2} out of phase and their nonclassical properties , 2009, 0907.0083.

[4]  Ali Mahdifar,et al.  Decoherence of spin-deformed bosonic model , 2013 .

[5]  R. Glauber Time‐Dependent Statistics of the Ising Model , 1963 .

[6]  R. Glauber The Quantum Theory of Optical Coherence , 1963 .

[7]  L. C. Biedenharn,et al.  The quantum group SUq(2) and a q-analogue of the boson operators , 1989 .

[8]  Mahdi Davoudi Darareh,et al.  A single trapped ion in a finite range trap , 2011, 1112.5775.

[9]  Syed Twareque Ali,et al.  Coherent States, Wavelets, and Their Generalizations , 2013 .

[10]  John R. Klauder,et al.  Continuous‐Representation Theory. II. Generalized Relation between Quantum and Classical Dynamics , 1963 .

[11]  I. Malkin,et al.  EVEN AND ODD COHERENT STATES AND EXCITATIONS OF A SINGULAR OSCILLATOR , 1974 .

[12]  Mahdi Davoudi Darareh,et al.  Nonclassical properties of a particle in a finite range trap: The f-deformed quantum oscillator approach , 2010, 1201.0247.

[13]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[14]  S. Solimeno,et al.  PHYSICAL NONLINEAR ASPECTS OF CLASSICAL AND QUANTUM q-OSCILLATORS , 1993 .

[15]  On the nonlinearity interpretation of q- and f-deformation and some applications , 1997, quant-ph/9705039.

[16]  E. Sudarshan,et al.  f-oscillators and nonlinear coherent states , 1996, quant-ph/9612006.

[17]  E. Schrödinger Der stetige Übergang von der Mikro- zur Makromechanik , 1926, Naturwissenschaften.

[18]  M. Schlosshauer Decoherence, the measurement problem, and interpretations of quantum mechanics , 2003, quant-ph/0312059.

[19]  J. Klauder Continuous‐Representation Theory. I. Postulates of Continuous‐Representation Theory , 1963 .

[20]  Geometric approach to nonlinear coherent states using the Higgs model for harmonic oscillator , 2006, quant-ph/0604176.

[21]  A. Perelomov Generalized Coherent States and Their Applications , 1986 .

[22]  R. Gilmore,et al.  Coherent states: Theory and some Applications , 1990 .

[23]  M. H. Naderi,et al.  Spatial confinement effects on a quantum harmonic oscillator: nonlinear coherent state approach , 2007, 0710.1942.

[24]  A. J. Macfarlane,et al.  On q-analogues of the quantum harmonic oscillator and the quantum group SU(2)q , 1989 .

[25]  A. Mahdifar,et al.  COHERENT STATE OF α-DEFORMED WEYL–HEISENBERG ALGEBRA , 2013 .

[26]  Multi-parametric deformed Heisenberg algebras: a route to complexity , 2000, hep-th/0011126.

[27]  F. Zaccaria,et al.  Correlation functions of quantum q-oscillators , 1993, hep-th/9303008.

[28]  M. Tavassoly,et al.  Superpositions of the dual family of nonlinear coherent states and their non-classical properties , 2010, 1003.2486.

[29]  Single-atom laser generates nonlinear coherent states , 2012, 1206.3459.