Deformed Weyl–Heisenberg algebra and quantum decoherence effect
暂无分享,去创建一个
Ali Mahdifar | M. Bagheri Harouni | Rasoul Roknizadeh | A. Mahdifar | Rasoul Roknizadeh | S. Dehdashti | M. B. Harouni | Sh. Dehdashti
[1] E. Curado,et al. Structure of generalized Heisenberg algebras and quantum decoherence analysis , 2013 .
[2] R. Glauber. Coherent and incoherent states of the radiation field , 1963 .
[3] M. Tavassoly,et al. Superposition of two nonlinear coherent states {π}/{2} out of phase and their nonclassical properties , 2009, 0907.0083.
[4] Ali Mahdifar,et al. Decoherence of spin-deformed bosonic model , 2013 .
[5] R. Glauber. Time‐Dependent Statistics of the Ising Model , 1963 .
[6] R. Glauber. The Quantum Theory of Optical Coherence , 1963 .
[7] L. C. Biedenharn,et al. The quantum group SUq(2) and a q-analogue of the boson operators , 1989 .
[8] Mahdi Davoudi Darareh,et al. A single trapped ion in a finite range trap , 2011, 1112.5775.
[9] Syed Twareque Ali,et al. Coherent States, Wavelets, and Their Generalizations , 2013 .
[10] John R. Klauder,et al. Continuous‐Representation Theory. II. Generalized Relation between Quantum and Classical Dynamics , 1963 .
[11] I. Malkin,et al. EVEN AND ODD COHERENT STATES AND EXCITATIONS OF A SINGULAR OSCILLATOR , 1974 .
[12] Mahdi Davoudi Darareh,et al. Nonclassical properties of a particle in a finite range trap: The f-deformed quantum oscillator approach , 2010, 1201.0247.
[13] W. Zurek. Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.
[14] S. Solimeno,et al. PHYSICAL NONLINEAR ASPECTS OF CLASSICAL AND QUANTUM q-OSCILLATORS , 1993 .
[15] On the nonlinearity interpretation of q- and f-deformation and some applications , 1997, quant-ph/9705039.
[16] E. Sudarshan,et al. f-oscillators and nonlinear coherent states , 1996, quant-ph/9612006.
[17] E. Schrödinger. Der stetige Übergang von der Mikro- zur Makromechanik , 1926, Naturwissenschaften.
[18] M. Schlosshauer. Decoherence, the measurement problem, and interpretations of quantum mechanics , 2003, quant-ph/0312059.
[19] J. Klauder. Continuous‐Representation Theory. I. Postulates of Continuous‐Representation Theory , 1963 .
[20] Geometric approach to nonlinear coherent states using the Higgs model for harmonic oscillator , 2006, quant-ph/0604176.
[21] A. Perelomov. Generalized Coherent States and Their Applications , 1986 .
[22] R. Gilmore,et al. Coherent states: Theory and some Applications , 1990 .
[23] M. H. Naderi,et al. Spatial confinement effects on a quantum harmonic oscillator: nonlinear coherent state approach , 2007, 0710.1942.
[24] A. J. Macfarlane,et al. On q-analogues of the quantum harmonic oscillator and the quantum group SU(2)q , 1989 .
[25] A. Mahdifar,et al. COHERENT STATE OF α-DEFORMED WEYL–HEISENBERG ALGEBRA , 2013 .
[26] Multi-parametric deformed Heisenberg algebras: a route to complexity , 2000, hep-th/0011126.
[27] F. Zaccaria,et al. Correlation functions of quantum q-oscillators , 1993, hep-th/9303008.
[28] M. Tavassoly,et al. Superpositions of the dual family of nonlinear coherent states and their non-classical properties , 2010, 1003.2486.
[29] Single-atom laser generates nonlinear coherent states , 2012, 1206.3459.