Iridescence and spectral filtering of the gyroid-type photonic crystals in Parides sesostris wing scales

The cover scales on the wing of the Emerald-patched Cattleheart butterfly, Parides sesostris, contain gyroid-type biological photonic crystals that brightly reflect green light. A pigment, which absorbs maximally at approximately 395 nm, is immersed predominantly throughout the elaborate upper lamina. This pigment acts as a long-pass filter shaping the reflectance spectrum of the underlying photonic crystals. The additional effect of the filtering is that the spatial distribution of the scale reflectance is approximately angle-independent, leading to a stable wing pattern contrast. The spectral tuning of the original reflectance is verified by photonic band structure modelling.

[1]  Steven G. Johnson,et al.  Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. , 2001, Optics express.

[2]  J. Baumberg,et al.  Mimicking the colourful wing scale structure of the Papilio blumei butterfly. , 2010, Nature nanotechnology.

[3]  J. R. Sambles,et al.  Structural colour: Colour mixing in wing scales of a butterfly , 2000, Nature.

[4]  Doekele G Stavenga,et al.  Butterfly wing colors: glass scales of Graphium sarpedon cause polarized iridescence and enhance blue/green pigment coloration of the wing membrane , 2010, Journal of Experimental Biology.

[5]  D. Stavenga,et al.  Papiliochrome II pigment reduces the angle dependency of structural wing colouration in nireus group papilionids , 2012, Journal of Experimental Biology.

[6]  Daniel Osorio,et al.  From spectral information to animal colour vision: experiments and concepts , 2010, Proceedings of the Royal Society B: Biological Sciences.

[7]  Shuichi Kinoshita,et al.  Structural colors in the realm of nature , 2008 .

[8]  R. Wootton,et al.  Quantified interference and diffraction in single Morpho butterfly scales , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[9]  P. Vukusic,et al.  Directionally Controlled Fluorescence Emission in Butterflies , 2005, Science.

[10]  Suresh Narayanan,et al.  Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales , 2010, Proceedings of the National Academy of Sciences.

[11]  D. G. Stavenga,et al.  Far field scattering pattern of differently structured butterfly scales , 2007, Journal of Comparative Physiology A.

[12]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.

[13]  P Vukusic,et al.  Physical methods for investigating structural colours in biological systems , 2009, Journal of The Royal Society Interface.

[14]  D. Stavenga,et al.  Spatial reflection patterns of iridescent wings of male pierid butterflies: curved scales reflect at a wider angle than flat scales , 2011, Journal of Comparative Physiology A.

[15]  H. Ghiradella Light and color on the wing: structural colors in butterflies and moths. , 1991, Applied optics.

[16]  M Gu,et al.  Circular dichroism in biological photonic crystals and cubic chiral nets. , 2011, Physical review letters.

[17]  C. Pinheiro Palatablility and escaping ability in Neotropical butterflies: tests with wild kingbirds (Tyrannus melancholicus, Tyrannidae) , 1996 .

[18]  D. Stavenga,et al.  Spectral reflectance properties of iridescent pierid butterfly wings , 2011, Journal of Comparative Physiology A.

[19]  J. Endler,et al.  The complex business of survival by aposematism. , 2005, Trends in ecology & evolution.

[20]  D. Stavenga,et al.  Imaging scatterometry of butterfly wing scales. , 2009, Optics express.

[21]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[22]  G. V. Chester,et al.  Solid State Physics , 2000 .

[23]  Bodo D Wilts,et al.  Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[24]  Jean-Pol Vigneron,et al.  Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration , 2011 .

[25]  S. Doucet,et al.  Iridescence: a functional perspective , 2009, Journal of The Royal Society Interface.

[26]  L. Poladian,et al.  Iridescence from photonic crystals and its suppression in butterfly scales , 2009, Journal of The Royal Society Interface.

[27]  J. Endler,et al.  Predator Mixes and the Conspicuousness of Aposematic Signals , 2004, The American Naturalist.

[28]  Peter Vukusic,et al.  Advanced Photonic Systems on the Wing-Scales of Lepidoptera , 2009 .

[29]  D. Stavenga,et al.  Hemispherical Brillouin zone imaging of a diamond-type biological photonic crystal , 2012, Journal of The Royal Society Interface.

[30]  L. Poladian,et al.  The chiral structure of porous chitin within the wing-scales of Callophrys rubi. , 2011, Journal of structural biology.

[31]  H De Raedt,et al.  Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi , 2010, Journal of The Royal Society Interface.

[32]  A. Bennett,et al.  The evolution of plumage colouration in parrots: a review , 2010 .

[33]  木下 修一,et al.  Structural colors in the realm of nature , 2008 .

[34]  Andrew R. Parker,et al.  Biomimetics: Photonic Nanostructures , 2010 .

[35]  D. Stavenga,et al.  Gyroid cuticular structures in butterfly wing scales: biological photonic crystals , 2007, Journal of The Royal Society Interface.

[36]  Jennifer N Cha,et al.  Discovery of a diamond-based photonic crystal structure in beetle scales. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.