Asynchronous space–time algorithm based on a domain decomposition method for structural dynamics problems on non-matching meshes

Large-scale practical engineering problems featuring localized phenomena often benefit from local control of mesh and time resolutions to efficiently capture the spatial and temporal scales of interest. To this end, we propose an asynchronous space–time algorithm based on a domain decomposition method for structural dynamics problems on non-matching meshes. The three-field algorithm is based on the dual-primal like domain decomposition approach utilizing the localized Lagrange multipliers along the space and time common-refinement-based interface. The proposed algorithm is parallel in nature and well suited for a heterogeneous computing environment. Moreover, two-levels of parallelism are embedded in this novel scheme. For linear dynamical problems, the algorithm is unconditionally stable, shows an optimal order of convergence with respect to space and time discretizations as well as ensures conservation of mass, momentum and energy across the non-matching grid interfaces. The method of manufactured solutions is used to verify the implementation, and an engineering application is considered, where a sandwich plate is impacted by a projectile.

[1]  Thomas J. R. Hughes,et al.  Implicit-Explicit Finite Elements in Transient Analysis: Stability Theory , 1978 .

[2]  P. Hansbo,et al.  A finite element method for domain decomposition with non-matching grids , 2003 .

[3]  Charbel Farhat,et al.  Implicit time integration of a class of constrained hybrid formulations—Part I: Spectral stability theory , 1995 .

[4]  Thomas J. R. Hughes,et al.  IMPLICIT-EXPLICIT FINITE ELEMENTS IN TRANSIENT ANALYSIS: IMPLEMENTATION AND NUMERICAL EXAMPLES. , 1978 .

[5]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[6]  Anthony Gravouil,et al.  Heterogeneous asynchronous time integrators for computational structural dynamics , 2015 .

[7]  C. Felippa,et al.  A localized version of the method of Lagrange multipliers and its applications , 2000 .

[8]  Nils-Erik Wiberg,et al.  A Post-Processing Technique and an a Posteriori Error Estimate for the Newmark Method in Dynamic Analysis , 1993 .

[9]  C. Felippa,et al.  A simple algorithm for localized construction of non‐matching structural interfaces , 2002 .

[10]  R. Haber,et al.  An adaptive spacetime discontinuous Galerkin method for cohesive models of elastodynamic fracture , 2010 .

[11]  Martin J. Gander,et al.  Analysis of the Parareal Time-Parallel Time-Integration Method , 2007, SIAM J. Sci. Comput..

[12]  Vincent Faucher,et al.  A time and space mortar method for coupling linear modal subdomains and non-linear subdomains in explicit structural dynamics , 2003 .

[13]  A. Combescure,et al.  Coupling subdomains with heterogeneous time integrators and incompatible time steps , 2009 .

[14]  Peter Knabner,et al.  Order of Convergence Estimates for an Euler Implicit, Mixed Finite Element Discretization of Richards' Equation , 2004, SIAM J. Numer. Anal..

[15]  Arun Prakash,et al.  On dual Schur domain decomposition method for linear first-order transient problems , 2008, J. Comput. Phys..

[16]  Yong-Rak Kim,et al.  Multiscale model for predicting damage evolution in composites due to impact loading , 2008 .

[17]  Frédéric Magoulès,et al.  Lagrangian formulation of domain decomposition methods: A unified theory , 2006 .

[18]  Carlos A. Felippa,et al.  Partitioned formulation of internal fluid–structure interaction problems by localized Lagrange multipliers , 2001 .

[19]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[20]  Yvon Maday,et al.  The Parareal in Time Iterative Solver: a Further Direction to Parallel Implementation , 2005 .

[21]  Jaroslav Kruis,et al.  Model of Imperfect Interfaces in Composite Materials and Its Numerical Solution by FETI Method , 2013, Domain Decomposition Methods in Science and Engineering XX.

[22]  Timothy G. Trucano,et al.  Verification and Validation in Computational Fluid Dynamics , 2002 .

[23]  Nils-Erik Wiberg,et al.  A Posteriori Local Error Estimation and Adaptive Time-stepping for Newmark Integration in Dynamic Analysis , 1992 .

[24]  C. Felippa,et al.  A Variational Framework for Solution Method Developments in Structural Mechanics , 1998 .

[25]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[26]  A. Muliana,et al.  Multi-scale modeling of time-dependent response of smart sandwich constructions , 2011 .

[27]  A. Prakash,et al.  A FETI‐based multi‐time‐step coupling method for Newmark schemes in structural dynamics , 2004 .

[28]  Arun Prakash,et al.  Computationally efficient multi-time-step method for partitioned time integration of highly nonlinear structural dynamics , 2014 .

[29]  Michael T. Heath,et al.  Common‐refinement‐based data transfer between non‐matching meshes in multiphysics simulations , 2004 .

[30]  Jan Mandel,et al.  Adaptive-Multilevel BDDC and its parallel implementation , 2013, Computing.

[31]  Michael T. Heath,et al.  Overlaying surface meshes, part I: algorithms , 2004, Int. J. Comput. Geom. Appl..

[32]  T. Mathew,et al.  Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations (Lecture Notes in Computational Science and Engineering) , 2008 .

[33]  P. Tallec,et al.  A discontinuous stabilized mortar method for general 3D elastic problems , 2007 .

[34]  Rajeev K. Jaiman,et al.  Assessment of conservative load transfer for fluid–solid interface with non‐matching meshes , 2005 .

[35]  Clark R. Dohrmann,et al.  Convergence of a balancing domain decomposition by constraints and energy minimization , 2002, Numer. Linear Algebra Appl..

[36]  Thomas J. R. Hughes,et al.  IMPLICIT-EXPLICIT FINITE ELEMENTS IN TRANSIENT ANALYSIS , 1978 .

[37]  Tarek P. Mathew,et al.  Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations , 2008, Lecture Notes in Computational Science and Engineering.

[38]  M. Falcone,et al.  Convergence Analysis for a Class of High-Order Semi-Lagrangian Advection Schemes , 1998 .

[39]  T. Belytschko,et al.  Stability of explicit‐implicit mesh partitions in time integration , 1978 .

[40]  F. Radu,et al.  Order of convergence estimates in time and space for an implicit Euler/mixed finite element discretization of Richards' equation by equivalence of mixed and conformed approaches , 2002 .

[41]  Patrick J. Roache,et al.  Verification and Validation in Computational Science and Engineering , 1998 .

[42]  Hester Bijl,et al.  Review of coupling methods for non-matching meshes , 2007 .

[43]  K. B. Nakshatrala,et al.  On multi-time-step monolithic coupling algorithms for elastodynamics , 2013, J. Comput. Phys..

[44]  Alain Combescure,et al.  A numerical scheme to couple subdomains with different time-steps for predominantly linear transient analysis , 2002 .

[45]  P. Tallec,et al.  Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity , 1998 .

[46]  Michal Beneš,et al.  Asynchronous multi-domain variational integrators for nonlinear hyperelastic solids , 2010 .

[47]  Carlos A. Felippa,et al.  A variational principle for the formulation of partitioned structural systems , 2000 .

[48]  Todd Arbogast,et al.  A Multiscale Mortar Mixed Finite Element Method , 2007, Multiscale Model. Simul..

[49]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[50]  Alain Combescure,et al.  Multi-time-step explicit–implicit method for non-linear structural dynamics , 2001 .

[51]  Franco Brezzi,et al.  The three‐field formulation for elasticity problems , 2005 .

[52]  T. Belytschko,et al.  Stability of an explicit multi-time step integration algorithm for linear structural dynamics equations , 1996 .

[53]  Michael T. Heath,et al.  Overlaying surface meshes, part II: topology preservation and feature matching , 2004, Int. J. Comput. Geom. Appl..

[54]  Mark O. Neal,et al.  Explicit-explicit subcycling with non-integer time step ratios for structural dynamic systems , 1989 .

[55]  A. Peirce Computer Methods in Applied Mechanics and Engineering , 2010 .

[56]  C. Farhat,et al.  A scalable Lagrange multiplier based domain decomposition method for time‐dependent problems , 1995 .

[57]  Michael T. Heath,et al.  Asynchronous multi‐domain variational integrators for non‐linear problems , 2008 .

[58]  Charbel Farhat,et al.  A transient FETI methodology for large‐scale parallel implicit computations in structural mechanics , 1994 .

[59]  Alain Combescure,et al.  An approach to the connection between subdomains with non‐matching meshes for transient mechanical analysis , 2002 .

[60]  Ted Belytschko,et al.  Mixed methods for time integration , 1979 .

[61]  Alain Combescure,et al.  Two FETI-based heterogeneous time step coupling methods for Newmark and α-schemes derived from the energy method , 2015 .

[62]  Mikhail Shashkov,et al.  Multi-Scale Lagrangian Shock Hydrodynamics on Q1/P0 Finite Elements: Theoretical Framework and Two-dimensional Computations. , 2008 .

[63]  J. Marsden,et al.  Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems , 2000 .

[64]  Carlos A. Felippa,et al.  Treatment of acoustic fluid–structure interaction by localized Lagrange multipliers and comparison to alternative interface-coupling methods , 2009 .