Neuromuscular electrical stimulation induced brain patterns to decode motor imagery

[1]  V. Caggiano,et al.  Proprioceptive Feedback and Brain Computer Interface (BCI) Based Neuroprostheses , 2012, PloS one.

[2]  Niels Birbaumer,et al.  Afferent and efferent activity control in the design of brain computer interfaces for motor rehabilitation , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[3]  Vera Kaiser,et al.  First Steps Toward a Motor Imagery Based Stroke BCI: New Strategy to Set up a Classifier , 2011, Front. Neurosci..

[4]  C. Vidaurre,et al.  Classifying motor imagery with FES induced EEG patterns , 2011, Neuroscience Letters.

[5]  J. Peters,et al.  Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery , 2011, Journal of neural engineering.

[6]  Klaus-Robert Müller,et al.  Introduction to machine learning for brain imaging , 2011, NeuroImage.

[7]  B. Schoelkopf,et al.  Transition from the locked in to the completely locked-in state: A physiological analysis , 2011, Clinical Neurophysiology.

[8]  Klaus-Robert Müller,et al.  Co-adaptive calibration to improve BCI efficiency , 2011, Journal of neural engineering.

[9]  Klaus-Robert Müller,et al.  CSP patches: an ensemble of optimized spatial filters. An evaluation study , 2011, Journal of neural engineering.

[10]  Klaus-Robert Müller,et al.  Machine-Learning-Based Coadaptive Calibration for Brain-Computer Interfaces , 2011, Neural Computation.

[11]  Motoaki Kawanabe,et al.  Toward Unsupervised Adaptation of LDA for Brain–Computer Interfaces , 2011, IEEE Transactions on Biomedical Engineering.

[12]  Benjamin Blankertz,et al.  Common spatial pattern patches - An optimized filter ensemble for adaptive brain-computer interfaces , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[13]  Robert Leeb,et al.  Towards natural non-invasive hand neuroprostheses for daily living , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[14]  Klaus-Robert Müller,et al.  Neurophysiological predictor of SMR-based BCI performance , 2010, NeuroImage.

[15]  Klaus-Robert Müller,et al.  On Optimal Channel Configurations for SMR-based Brain–Computer Interfaces , 2010, Brain Topography.

[16]  Nicole Krämer,et al.  Time Domain Parameters as a feature for EEG-based Brain-Computer Interfaces , 2009, Neural Networks.

[17]  N. Birbaumer,et al.  Brain–computer interfaces and communication in paralysis: Extinction of goal directed thinking in completely paralysed patients? , 2008, Clinical Neurophysiology.

[18]  Klaus-Robert Müller,et al.  Towards Zero Training for Brain-Computer Interfacing , 2008, PloS one.

[19]  K.-R. Muller,et al.  Optimizing Spatial filters for Robust EEG Single-Trial Analysis , 2008, IEEE Signal Processing Magazine.

[20]  N. Thakor,et al.  Journal of Neuroengineering and Rehabilitation Open Access a Brain-computer Interface with Vibrotactile Biofeedback for Haptic Information , 2007 .

[21]  Klaus-Robert Müller,et al.  The non-invasive Berlin Brain–Computer Interface: Fast acquisition of effective performance in untrained subjects , 2007, NeuroImage.

[22]  M Congedo,et al.  A review of classification algorithms for EEG-based brain–computer interfaces , 2007, Journal of neural engineering.

[23]  José del R. Millán,et al.  An Introduction to Brain-Computer Interfacing , 2007 .

[24]  Reinhold Scherer,et al.  Study of discriminant analysis applied to motor imagery bipolar data , 2006, Medical & Biological Engineering & Computing.

[25]  Rajesh P. N. Rao,et al.  Towards adaptive classification for BCI , 2006, Journal of neural engineering.

[26]  Bin He,et al.  A wavelet-based time–frequency analysis approach for classification of motor imagery for brain–computer interface applications , 2005, Journal of neural engineering.

[27]  G. Pfurtscheller,et al.  EEG-based neuroprosthesis control: A step towards clinical practice , 2005, Neuroscience Letters.

[28]  Christa Neuper,et al.  14 Human Brain-Computer Interface , 2005 .

[29]  José del R. Millán,et al.  Brain-actuated interaction , 2004, Artif. Intell..

[30]  José del R. Millán,et al.  Noninvasive brain-actuated control of a mobile robot by human EEG , 2004, IEEE Transactions on Biomedical Engineering.

[31]  N. Birbaumer,et al.  Predictability of Brain-Computer Communication , 2004 .

[32]  G. Pfurtscheller,et al.  Critical Decision-Speed and Information Transfer in the “Graz Brain–Computer Interface” , 2003, Applied psychophysiology and biofeedback.

[33]  K.-R. Muller,et al.  Linear and nonlinear methods for brain-computer interfaces , 2003, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[34]  G Pfurtscheller,et al.  Visualization of significant ERD/ERS patterns in multichannel EEG and ECoG data , 2002, Clinical Neurophysiology.

[35]  J. Wolpaw,et al.  Brain-computer communication: unlocking the locked in. , 2001, Psychological bulletin.

[36]  D. Popovic,et al.  Cloning biological synergies improves control of elbow neuroprostheses , 2001, IEEE Engineering in Medicine and Biology Magazine.

[37]  F. L. D. Silva,et al.  Event-related EEG/MEG synchronization and desynchronization: basic principles , 1999, Clinical Neurophysiology.

[38]  G. Pfurtscheller,et al.  Designing optimal spatial filters for single-trial EEG classification in a movement task , 1999, Clinical Neurophysiology.

[39]  W. Klimesch EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis , 1999, Brain Research Reviews.

[40]  J R Wolpaw,et al.  Spatial filter selection for EEG-based communication. , 1997, Electroencephalography and clinical neurophysiology.

[41]  Barry H. Cohen Explaining Psychological Statistics , 2013 .

[42]  Porto Carras Heart rate and heart-rate variability during hypnotic responding , 1994 .

[43]  Christa Neuper,et al.  Graz Brain-Computer Interface (BCI) II , 1994, ICCHP.