Efficient Estimation and Robust Inference of Linear Regression Models in the Presence of Heteroscedastic Errors and High Leverage Points

It is common for linear regression models that the error variances are not the same for all observations and there are some high leverage data points. In such situations, the available literature advocates the use of heteroscedasticity consistent covariance matrix estimators (HCCME) for the testing of regression coefficients. Primarily, such estimators are based on the residuals derived from the ordinary least squares (OLS) estimator that itself can be seriously inefficient in the presence of heteroscedasticity. To get efficient estimation, many efficient estimators, namely the adaptive estimators are available but their performance has not been evaluated yet when the problem of heteroscedasticity is accompanied with the presence of high leverage data. In this article, the presence of high leverage data is taken into account to evaluate the performance of the adaptive estimator in terms of efficiency. Furthermore, our numerical work also evaluates the performance of the robust standard errors based on this efficient estimator in terms of interval estimation and null rejection rate (NRR).

[1]  Miguel A. Delgado Semiparametric Generalized Least Squares in the Multivariate Nonlinear Regression Model , 1992, Econometric Theory.

[2]  P. Robinson Asymptotically efficient estimation in the presence of heteroskedasticity of unknown form , 1987 .

[3]  Munir Ahmed,et al.  Inference under Heteroscedasticity of Unknown Form Using an Adaptive Estimator , 2011 .

[4]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[5]  Aslam Muhammad ADAPTIVE PROCEDURES FOR ESTIMATION OF LINEAR REGRESSION MODELS WITH KNOWN AND UNKNOWN HETEROSCEDASTIC ERRORS , 2005 .

[6]  Spyros G. Zarkos,et al.  Heteroskedasticity-consistent covariance matrix estimation:white's estimator and the bootstrap , 2001 .

[7]  Spyros G. Zarkos,et al.  Bootstrap methods for heteroskedastic regression models: evidence on estimation and testing , 1999 .

[8]  Ghulam Rasul Pasha Estimation methods for regression models with unequal error variances , 1982 .

[9]  James G. MacKinnon,et al.  Thirty Years of Heteroskedasticity-Robust Inference , 2013 .

[10]  Nilanjana Roy,et al.  IS ADAPTIVE ESTIMATION USEFUL FOR PANEL MODELS WITH HETEROSKEDASTICITY IN THE INDIVIDUAL SPECIFIC ERROR COMPONENT? SOME MONTE CARLO EVIDENCE , 2002 .

[11]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[12]  H. White A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .

[13]  J. S. Long,et al.  Using Heteroscedasticity Consistent Standard Errors in the Linear Regression Model , 2000 .

[14]  W. Fuller,et al.  Estimation for a Linear Regression Model with Unknown Diagonal Covariance Matrix , 1978 .

[15]  R. Welsch,et al.  The Hat Matrix in Regression and ANOVA , 1978 .

[16]  Moon Hee Kim,et al.  Relations between vector continuous-time program and vector variational-type inequality , 2004 .

[17]  David Ruppert,et al.  Robust Estimation in Heteroscedastic Linear Models. , 1982 .

[18]  D. B. Duncan,et al.  Estimating Heteroscedastic Variances in Linear Models , 1975 .

[19]  P. J. Huber The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .

[20]  H. White,et al.  Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties☆ , 1985 .

[21]  Francisco Cribari-Neto,et al.  Numerical evaluation of tests based on different heteroskedasticity-consistent covariance matrix estimators , 2005 .

[22]  E. Nadaraya On Estimating Regression , 1964 .

[23]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[24]  F. Eicker Asymptotic Normality and Consistency of the Least Squares Estimators for Families of Linear Regressions , 1963 .

[25]  Joshua D. Angrist,et al.  Mostly Harmless Econometrics: An Empiricist's Companion , 2008 .

[26]  Tatiene C. Souza,et al.  Inference Under Heteroskedasticity and Leveraged Data , 2007 .

[27]  D. Hinkley Jackknifing in Unbalanced Situations , 1977 .

[28]  Francisco Cribari-Neto,et al.  Asymptotic inference under heteroskedasticity of unknown form , 2004, Comput. Stat. Data Anal..

[29]  W. W. Muir,et al.  Regression Diagnostics: Identifying Influential Data and Sources of Collinearity , 1980 .

[30]  Spyros G. Zarkos,et al.  Leverage-adjusted heteroskedastic bootstrap methods , 2004 .

[31]  Raymond J. Carroll,et al.  Adapting for Heteroscedasticity in Linear Models , 1982 .

[32]  S. Chatterjee,et al.  Influential Observations, High Leverage Points, and Outliers in Linear Regression , 1986 .

[33]  Francisco Cribari-Neto,et al.  Heteroskedasticity-consistent interval estimators , 2009 .

[34]  Emmanuel Flachaire,et al.  More Efficient Tests Robust to Heteroskedasticity of Unknown Form , 2005 .

[35]  A. Chesher,et al.  The Bias of a Heteroskedasticity Consistent Covariance Matrix Estimator , 1987 .

[36]  A. Chesher,et al.  THE FINITE-SAMPLE DISTRIBUTIONS OF HETEROSKEDASTICITY ROBUST WALD STATISTICS , 1991 .