Rigorous error estimates for the memory integral in the Mori-Zwanzig formulation

We develop rigorous error estimates and provably convergent approximations for the memory integral in the Mori-Zwanzig (MZ) formulation. The new theory is build upon rigorous mathematical foundations and it is presented for both state-space and probability density function space formulations of the MZ equation. In particular, we derive error bounds and sufficient convergence conditions for short-memory approximations, the $t$-model and new types of hierarchical finite-memory approximations. Numerical examples demonstrating convergence of the proposed algorithms are presented for linear and nonlinear dynamical systems evolving from random initial states.

[1]  Eric Darve,et al.  Computing generalized Langevin equations and generalized Fokker–Planck equations , 2009, Proceedings of the National Academy of Sciences.

[2]  G. Karniadakis,et al.  A computable evolution equation for the joint response-excitation probability density function of stochastic dynamical systems , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  G. Söderlind,et al.  The logarithmic norm. History and modern theory , 2006 .

[4]  Panos Stinis,et al.  Renormalized Mori–Zwanzig-reduced models for systems without scale separation , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  H. Mori A Continued-Fraction Representation of the Time-Correlation Functions , 1965 .

[6]  S. Gudder A Radon-Nikodým theorem for $\ast $-algebras. , 1979 .

[7]  H. Umegaki CONDITIONAL EXPECTATION IN AN OPERATOR ALGEBRA, II , 1954 .

[8]  E. Lorenz Predictability of Weather and Climate: Predictability – a problem partly solved , 2006 .

[9]  A. J. Chorin,et al.  Optimal Prediction for Hamiltonian Partial Differential Equations , 1999 .

[10]  A J Chorin,et al.  Optimal prediction and the Mori-Zwanzig representation of irreversible processes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[11]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[12]  D Venturi,et al.  Convolutionless Nakajima–Zwanzig equations for stochastic analysis in nonlinear dynamical systems , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  Robert Zwanzig,et al.  Memory Effects in Irreversible Thermodynamics , 1961 .

[14]  Jangil Kim,et al.  Dynamics of a harmonic oscillator on the Bethe lattice , 2000 .

[15]  Fox,et al.  Functional-calculus approach to stochastic differential equations. , 1986, Physical review. A, General physics.

[16]  Alexandre J. Chorin,et al.  Problem reduction, renormalization, and memory , 2005 .

[17]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Lee,et al.  Exact time evolution of a classical harmonic-oscillator chain. , 1985, Physical review. A, General physics.

[19]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[20]  B. Alder,et al.  Decay of the Velocity Autocorrelation Function , 1970 .

[21]  N. Biggs Algebraic Graph Theory , 1974 .

[22]  Heyrim Cho,et al.  Statistical analysis and simulation of random shocks in stochastic Burgers equation , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  Daniele Venturi,et al.  Duality and Conditional Expectations in the Nakajima-Mori-Zwanzig Formulation , 2016, 1610.01696.

[24]  L. Trefethen,et al.  Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .

[25]  R. Zwanzig Nonequilibrium statistical mechanics , 2001, Physics Subject Headings (PhySH).

[26]  H. Mori Transport, Collective Motion, and Brownian Motion , 1965 .

[27]  Francesco Petruccione,et al.  The Time-Convolutionless Projection Operator Technique in the Quantum Theory of Dissipation and Decoherence , 2001 .

[28]  A. Karimi,et al.  Extensive chaos in the Lorenz-96 model. , 2009, Chaos.

[29]  Lloyd N. Trefethen,et al.  Pseudospectra of Linear Operators , 1997, SIAM Rev..

[30]  Bruce J. Berne,et al.  Time-Correlation Functions, Memory Functions, and Molecular Dynamics , 1970 .

[31]  Alexandre J. Chorin,et al.  Optimal prediction with memory , 2002 .

[32]  D. Venturi The Numerical Approximation of Nonlinear Functionals and Functional Differential Equations , 2016, 1604.05250.

[33]  Daniele Venturi,et al.  Faber approximation of the Mori-Zwanzig equation , 2017, J. Comput. Phys..