One-step Heyting Algebras and Hypersequent Calculi with the Bounded Proof Property

We investigate proof-theoretic properties of hypersequent calculi for intermediate logics using algebraic methods. More precisely, we consider a new weakly analytic subformula property (the bounded proof property) of such calculi. Despite being strictly weaker than both cut-elimination and the subformula property, this property is sufficient to ensure decidability of finitely axiomatized calculi. We introduce one-step Heyting algebras and establish a semantic criterion characterizing calculi for intermediate logics with the bounded proof property and the finite model property in terms of one-step Heyting algebras. Finally, we show how this semantic criterion can be applied to a number of calculi for well-known intermediate logics such as LC,KC and BD2.

[1]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[2]  George Grätzer On the Existence of Free Structures over Universal Classes , 1968 .

[3]  Silvio Ghilardi,et al.  Free Modal Algebras Revisited: The Step-by-Step Method , 2014 .

[4]  Paolo Maffezioli,et al.  Hypersequent and Labelled Calculi for Intermediate Logics , 2013, TABLEAUX.

[5]  Willem Conradie,et al.  Algorithmic correspondence for intuitionistic modal mu-calculus , 2015, Theor. Comput. Sci..

[6]  Ori Lahav,et al.  A unified semantic framework for fully structural propositional sequent systems , 2013, TOCL.

[7]  Frank Wolter,et al.  Advances in Modal Logic 3 , 2002 .

[8]  Agata Ciabattoni,et al.  Hypersequent Calculi for some Intermediate Logics with Bounded Kripke Models , 2001, J. Log. Comput..

[9]  Henrik Bødker,et al.  Continuity , 2018, Journalism.

[10]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[11]  George Boolos,et al.  Don't eliminate cut , 1984, J. Philos. Log..

[12]  Samuel Jacob van Gool,et al.  Free Algebras for Gödel-Löb Provability Logic , 2014, Advances in Modal Logic.

[13]  Emil Jerábek,et al.  Canonical rules , 2009, The Journal of Symbolic Logic.

[14]  Kazushige Terui,et al.  From Axioms to Analytic Rules in Nonclassical Logics , 2008, 2008 23rd Annual IEEE Symposium on Logic in Computer Science.

[15]  Carsten Butz,et al.  Finitely Presented Heyting Algebras , 1998 .

[16]  Helmut Schwichtenberg,et al.  Basic proof theory , 1996, Cambridge tracts in theoretical computer science.

[17]  Nick Bezhanishvili,et al.  Stable Formulas in Intuitionistic Logic , 2018, Notre Dame J. Formal Log..

[18]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[19]  Guram Bezhanishvili,et al.  UvA-DARE ( Digital Academic Repository ) Locally finite reducts of Heyting algebras and canonical formulas , 2014 .

[20]  Silvio Ghilardi,et al.  An Algebraic Theory of Normal Forms , 1995, Ann. Pure Appl. Log..

[21]  Guram Bezhanishvili,et al.  Cofinal Stable Logics , 2016, Stud Logica.

[22]  Kit Fine,et al.  Normal forms in modal logic , 1975, Notre Dame J. Formal Log..

[23]  Silvio Ghilardi,et al.  Multiple-conclusion Rules, Hypersequents Syntax and Step Frames , 2014, Advances in Modal Logic.

[24]  Samson Abramsky,et al.  A Cook's Tour of the Finitary Non-Well-Founded Sets , 2011, We Will Show Them!.

[25]  Arnon Avron,et al.  A constructive analysis of RM , 1987, Journal of Symbolic Logic.

[26]  Nick Bezhanishvili,et al.  Finitely generated free Heyting algebras via Birkhoff duality and coalgebra , 2011, Log. Methods Comput. Sci..

[27]  Guram Bezhanishvili,et al.  STABLE CANONICAL RULES , 2016, The Journal of Symbolic Logic.

[28]  Andrzej Indrzejczak,et al.  Cut-free Hypersequent Calculus for S4.3 , 2012 .

[29]  Ori Lahav,et al.  From Frame Properties to Hypersequent Rules in Modal Logics , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.

[30]  Jürg Schmid Quasiorders and Sublattices of Distributive Lattices , 2002, Order.

[31]  Dov M. Gabbay,et al.  Cut-free proof systems for logics of weak excluded middle , 1999, Soft Comput..

[32]  Alexander Kurz,et al.  Free Modal Algebras: A Coalgebraic Perspective , 2007, CALCO.

[33]  Guram Bezhanishvili,et al.  Bitopological duality for distributive lattices and Heyting algebras , 2010, Mathematical Structures in Computer Science.

[34]  Emil Jerábek,et al.  A note on the substructural hierarchy , 2015, Math. Log. Q..

[35]  Giovanna Corsi,et al.  A Cut-Free Calculus For Dummett's LC Quantified , 1989, Math. Log. Q..

[36]  Silvio Ghilardi,et al.  A Sheaf Representation and Duality for Finitely Presenting Heyting Algebras , 1995, J. Symb. Log..

[37]  Brunella Gerla,et al.  Gödel algebras free over finite distributive lattices , 2008, Ann. Pure Appl. Log..

[38]  Kazushige Terui,et al.  Algebraic proof theory for substructural logics: Cut-elimination and completions , 2012, Ann. Pure Appl. Log..

[39]  Marcello D'Agostino,et al.  The Taming of the Cut. Classical Refutations with Analytic Cut , 1994, J. Log. Comput..

[40]  Kurt Schutte Syntactical and Semantical Properties of Simple Type Theory , 1960 .

[41]  Samuel Jacob van Gool,et al.  On generalizing free algebras for a functor , 2013, J. Log. Comput..

[42]  M. V. Zakhar'yashchev Syntax and semantics of superintutionistic logics , 1989 .

[43]  W. A. McConnach,et al.  Uniform , 1963, Definitions.

[44]  W. Ackermann Untersuchungen über das Eliminationsproblem der mathematischen Logik , 1935 .

[45]  A. Avron The method of hypersequents in the proof theory of propositional non-classical logics , 1996 .

[46]  Silvio Ghilardi,et al.  Continuity, freeness, and filtrations , 2010, J. Appl. Non Class. Logics.

[47]  Silvio Ghilardi,et al.  The bounded proof property via step algebras and step frames , 2013, Ann. Pure Appl. Log..

[48]  A. Chagrov,et al.  Modal Logic (Oxford Logic Guides, vol. 35) , 1997 .