A classification of smooth embeddings of 3-manifolds in 6-space

We work in the smooth category. If there are knotted embeddings $${S^n \to \mathbb{R}^m}$$, which often happens for 2m < 3n + 4, then no explicit complete description of the embeddings of n-manifolds into $${\mathbb{R}^m}$$ up to isotopy was known, except for the disjoint unions of spheres. Let N be a closed connected orientable 3-manifold. Our main result is the following description of the set Emb6(N) of embeddings $${N \to \mathbb{R}^6}$$ up to isotopy. We define the Whitney and the Kreck invariants and prove that the Whitney invariant $${W: {\rm Emb}^6(N) \to H_1(N; \mathbb{Z})}$$ is surjective. For each$${u \in H_1(N; \mathbb{Z})}$$ the Kreck invariant $${\eta_u : W^{-1} u \to \mathbb{Z}_{d(u)}}$$ is bijective, where d(u) is the divisibility of the projection of u to the free part of$${H_1(N; \mathbb{Z})}$$. The group Emb6(S3) is isomorphic to $${\mathbb{Z}}$$ (Haefliger). This group acts on Emb6(N) by embedded connected sum. It was proved that the orbit space of this action maps under W bijectively to $${H_1(N; \mathbb{Z})}$$ (by Vrabec and Haefliger’s smoothing theory). The new part of our classification result is the determination of the orbits of the action. E.g. for $${N = \mathbb{R}P^3}$$ the action is free, while for N = S1 × S2 we explicitly construct an embedding $${f : N \to \mathbb{R}^6}$$such that for each knot$${l : S^3 \to \mathbb{R}^6}$$the embedding f#l is isotopic to f. The proof uses new approaches involving modified surgery theory as developed by Kreck or the Boéchat–Haefliger formula for the smoothing obstruction.

[1]  A. Skopenkov On the deleted product criterion for embeddability of manifolds in Rm , 1998 .

[2]  Fang Fuquan Embedding four manifolds in R7 , 1994 .

[3]  W. Massey,et al.  On the normal bundle of a sphere imbedded in Euclidean space , 1959 .

[4]  Differential 3-knots in 5-space with and without self-intersections , 2000, math/0002077.

[5]  Masamichi Takase A geometric formula for Haefliger knots , 2004 .

[6]  Embeddings from the point of view of immersion theory: Part II , 1999, math/9905202.

[7]  Embeddings from the point of view of immersion theory , 1999, math/9905203.

[8]  Charles Terence Clegg Wall,et al.  Surgery on compact manifolds , 1970 .

[9]  Regular homotopy classes of immersions of 3-manifolds into 5-space , 2001, math/0105077.

[10]  A. Skopenkov Surveys in Contemporary Mathematics: Embedding and knotting of manifolds in Euclidean spaces , 2006, math/0604045.

[11]  C. Wall Classi?cation of (n ? 1)-connected 2n-manifolds , 1962 .

[12]  M. Hirsch,et al.  On the existence and classification of differentiable embeddings , 1963 .

[13]  Joze Vrabec Knotting a -connected closed -manifold in ^{2-} , 1977 .

[14]  J. Moser,et al.  Integrable Hamiltonian systems , 2005 .

[15]  HOMOLOGY 3-SPHERES IN CODIMENSION THREE , 2005, math/0506464.

[16]  A. Skopenkov A new invariant and parametric connected sum of embeddings , 2005 .

[17]  Joze Vrabec Knotting a k-Connected Closed PL m-Manifold in E 2m-k , 1977 .

[18]  O. Viro,et al.  Non-diffeomorphic but homeomorphic knottings of surfaces in the 4-sphere , 1988 .

[19]  O. Viro,et al.  Exotic knottings of surfaces in the 4-sphere , 1987 .

[20]  R. Kirby The topology of 4-manifolds , 1989 .

[21]  A classification of $S^3$-bundles over $S^4$ , 1999, math/0004147.

[22]  A. Skopenkov On the deleted product criterion for embeddability of manifolds in $ \Bbb {R}^m $ , 1997 .

[23]  H. Whitney,et al.  CLASSIFICATION OF ORIENTED SPHERE BUNDLES OVER A 4-COMPLEX , 1959 .

[24]  M. Kreck,et al.  Some nondiffeomorphic homeomorphic homogeneous 7-manifolds with positive sectional curvature , 1991 .

[25]  A. Skopenkov,et al.  On the Haefliger-Hirsch-Wu invariants for embeddings and immersions , 2002 .

[26]  A. Haefliger,et al.  Knotted (4k - 1)-Spheres in 6k-Space , 1962 .

[27]  A. Haefliger,et al.  Plongements différentiables des variétés orientées de dimension 4 dans R 7 , 1970 .

[28]  戸田 宏,et al.  Composition methods in homotopy groups of spheres , 1962 .

[29]  A. Haefliger Plongements différentiables de variétés dans variétés , 1962 .

[30]  M. Hirsch Embeddings and compressions of polyhedra and smooth manifolds , 1966 .

[31]  C. Rourke,et al.  A Geometric Approach to Homology Theory , 1976 .

[32]  J. Boéchat Plongements de variétés différentiables orientées de dimension 4k dans R6k+1 , 1971 .

[33]  Dušan D. Repovš,et al.  Classification of framed links in 3-manifolds , 2007, 0705.4166.

[34]  Dušan D. Repovš,et al.  On the Browder-Levine-Novikov Embedding Theorems , 2021, 2104.01820.

[35]  Arkadiy Skopenkov,et al.  A classification of smooth embeddings of 4-manifolds in 7-space, I☆ , 2005, 0808.1795.

[36]  A. Haefliger Lissage des immersions—I , 1967 .

[37]  Daniel Ruberman Imbedding four-manifolds and slicing links , 1982, Mathematical Proceedings of the Cambridge Philosophical Society.

[38]  S. J. Kaplan Constructing framed 4-manifolds with given almost framed boundaries , 1979 .

[39]  Percy Deift,et al.  Integrable Hamiltonian systems , 1996 .

[40]  J. Hudson Piecewise linear topology , 1966 .

[41]  J. Eells,et al.  An invariant for certain smooth manifolds , 1962 .

[42]  R L Cohen,et al.  Immersions of manifolds. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[43]  On the chain-level intersection pairing for PL manifolds , 2006 .

[44]  Charles Terence Clegg Wall,et al.  Classification problems in differential topology. V , 1966 .

[45]  J. Hudson,et al.  Concordance, Isotopy, and Diffeotopy , 1970 .

[46]  C. Wall On Simply-Connected 4-Manifolds , 1964 .

[47]  Alexey V. Bolsinov,et al.  Integrable Hamiltonian Systems: Geometry, Topology, Classification , 2004 .

[48]  András I. Stipsicz,et al.  4-manifolds and Kirby calculus , 1999 .

[49]  M. Hirsch The Imbedding of Bounding Manifolds in Euclidean Space , 1961 .

[50]  A. Haefliger Differentiable Embeddings of S n in S n+q for q > 2 , 1966 .

[51]  Joze Vrabec Deforming a PL submanifold of Euclidean space into a hyperplane , 1989 .

[52]  U. Koschorke Link maps and the geometry of their invariants , 1988 .

[53]  Dušan Repovš,et al.  New results on embeddings of polyhedra and manifolds in Euclidean spaces , 1999 .

[54]  Mattias Kreck Surgery and duality , 1999 .

[55]  Richard Mandelbaum,et al.  Four-dimensional topology: an introduction , 1980 .

[56]  L. Kramer,et al.  Projective planes and isoparametric hypersurfaces , 1995 .

[57]  David Bausum Embeddings and immersions of manifolds in Euclidean space , 1975 .

[58]  Dušan D. Repovš,et al.  On Embeddings of Tori in Euclidean Spaces , 2005 .

[59]  Peter Teichner,et al.  On the signature of four-manifolds with universal covering spin , 1993 .

[60]  T. Yasui On the map defined by regarding embeddings as immersions , 1983 .

[61]  A. Skopenkov CLASSIFICATION OF EMBEDDINGS BELOW THE METASTABLE DIMENSION , 2006 .

[62]  A. Marin,et al.  A la recherche de la topologie perdue , 1986 .

[63]  J. Milnor On Manifolds Homeomorphic to the 7-Sphere , 1956 .

[64]  Dušan D. Repovš,et al.  Homotopy type of the complement of an immersion and classification of embeddings of tori , 2008, 0803.4285.

[65]  O. Viro LOCAL KNOTTING OF SUBMANIFOLDS , 1973 .

[66]  Friedrich Hirzebruch Topological methods in algebraic geometry , 1966 .

[67]  Revaz Valerianovich Gamkrelidze,et al.  Topology and Geometry , 1970 .

[68]  The compression theorem I , 1997, math/9712235.

[69]  H. O. Erdin Characteristic Classes , 2004 .

[70]  J. Levine Inertia Groups of Manifolds and Diffeomorphisms of Spheres , 1970 .