Characterizing the chiral index of a single-walled carbon nanotube.

The properties of single-walled carbon nanotubes (SWCNTs) mainly depend on their geometry. However, there are still formidable difficulties to determine the chirality of SWCNTs accurately. In this review, some efficient methods to characterize the chiral indices of SWCNTs are illuminated. These methods are divided into imaging techniques and spectroscopy techniques. With these methods, diameter, helix angle, and energy states can be measured. Generally speaking, imaging techniques have a higher accuracy and universality, but are time-consuming with regard to the sample preparation and characterization. The spectroscopy techniques are very simple and fast in operation, but these techniques can be applied only to the particular structure of the sample. Here, the principles and operations of each method are introduced, and a comprehensive understanding of each technique, including their advantages and disadvantages, is given. Advanced applications of some methods are also discussed. The aim of this review is to help readers to choose methods with the appropriate accuracy and time complexity and, furthermore, to put forward an idea to find new methods for chirality characterization.

[1]  J. Zuo,et al.  Measurement of radial deformation of single-wall carbon nanotubes induced by intertube van der Waals forces , 2008 .

[2]  V. Crespi,et al.  Registry-dependent interlayer potential for graphitic systems , 2005 .

[3]  Keita Inose,et al.  Determination of the chiralities of isolated carbon nanotubes during superplastic elongation process , 2010 .

[4]  Bennett B. Goldberg,et al.  G-band resonant Raman study of 62 isolated single-wall carbon nanotubes , 2002 .

[5]  Rick P. Millane,et al.  RECONSTRUCTING SYMMETRIC IMAGES FROM THEIR UNDERSAMPLED FOURIER INTENSITIES , 1997 .

[6]  J. Xie,et al.  Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. , 2009, Nano letters.

[7]  M. Dresselhaus,et al.  Interband optical transitions in left- and right-handed single-wall carbon nanotubes , 2004 .

[8]  L. Qin Electron diffraction from cylindrical nanotubes , 1994 .

[9]  Anastasios John Hart,et al.  Rapid growth and flow-mediated nucleation of millimeter-scale aligned carbon nanotube structures from a thin-film catalyst. , 2006, The journal of physical chemistry. B.

[10]  A. Bonnot,et al.  Molecular mechanics investigations of carbon nanotube and graphene sheet interaction , 2009 .

[11]  Michael S Strano,et al.  Concomitant length and diameter separation of single-walled carbon nanotubes. , 2004, Journal of the American Chemical Society.

[12]  K. Hata,et al.  Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes , 2004, Science.

[13]  M. Nardelli,et al.  MECHANISM OF STRAIN RELEASE IN CARBON NANOTUBES , 1998 .

[14]  A. Hassanien,et al.  Atomic structure and electronic properties of single-wall carbon nanotubes probed by scanning tunneling microscope at room temperature , 1998 .

[15]  Hiromichi Kataura,et al.  Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes , 2003, Nature materials.

[16]  P. Lambin,et al.  Interpretation of electron diffraction from carbon nanotube bundles presenting precise helicity , 2004 .

[17]  Kenneth A. Smith,et al.  Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide , 1999 .

[18]  C. Lieber,et al.  Atomic structure and electronic properties of single-walled carbon nanotubes , 1998, Nature.

[19]  Jie Liu,et al.  Direct observation of the strong interaction between carbon nanotubes and quartz substrate , 2009 .

[20]  S. Louie,et al.  Systematic determination of absolute absorption cross-section of individual carbon nanotubes , 2013, Proceedings of the National Academy of Sciences.

[21]  Pablo Jarillo-Herrero,et al.  Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. , 2011, Nature materials.

[22]  M. S. de Vries,et al.  Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls , 1993, Nature.

[23]  M. Dresselhaus,et al.  The concept of cutting lines in carbon nanotube science. , 2003, Journal of nanoscience and nanotechnology.

[24]  Charles M. Lieber,et al.  Atomically resolved single-walled carbon nanotube intramolecular junctions. , 2001, Science.

[25]  Juan-Yu Yang,et al.  Structure Dependence of the Intermediate-Frequency Raman Modes in Isolated Single-Walled Carbon Nanotubes , 2012 .

[26]  Benji Maruyama,et al.  In situ evidence for chirality-dependent growth rates of individual carbon nanotubes. , 2012, Nature materials.

[27]  H. Jiang,et al.  Growth Mechanism of Single-Walled Carbon Nanotubes on Iron− Copper Catalyst and Chirality Studies by Electron Diffraction , 2012 .

[28]  M. Dresselhaus,et al.  Observation of electronic Raman scattering in metallic carbon nanotubes. , 2011, Physical review letters.

[29]  J. Rogers,et al.  High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. , 2007, Nature nanotechnology.

[30]  H. Kataura,et al.  Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography , 2011, Nature communications.

[31]  James Hone,et al.  Interactions between individual carbon nanotubes studied by Rayleigh scattering spectroscopy. , 2006, Physical review letters.

[32]  Ming Zheng,et al.  Solution redox chemistry of carbon nanotubes. , 2004, Journal of the American Chemical Society.

[33]  H. van Kempen,et al.  Low-temperature scanning tunneling microscope for use on artificially fabricated nanostructures , 1994 .

[34]  Jason K. Streit,et al.  Directly measured optical absorption cross sections for structure-selected single-walled carbon nanotubes. , 2014, Nano letters.

[35]  T. Ebbesen Physical Properties of Carbon Nanotubes , 1997 .

[36]  C. Lieber,et al.  Scanning Tunneling Microscopy and Spectroscopy Studies of Single Wall Carbon Nanotubes , 1998 .

[37]  Benedict,et al.  Pure carbon nanoscale devices: Nanotube heterojunctions. , 1996, Physical review letters.

[38]  Riichiro Saito,et al.  Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes , 2001 .

[39]  M. Malac,et al.  Radiation damage in the TEM and SEM. , 2004, Micron.

[40]  C. Voisin,et al.  Chirality dependence of the absorption cross section of carbon nanotubes. , 2013, Physical review letters.

[41]  Seiji Takeda,et al.  Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. , 2008, Nano letters.

[42]  G. Mahan,et al.  Oscillations of a thin hollow cylinder: Carbon nanotubes , 2002 .

[43]  Anna Derbakova,et al.  A systematic procedure for determining the chiral indices of multi-walled carbon nanotubes using electron diffraction--each and every shell. , 2010, Ultramicroscopy.

[44]  J. Zuo,et al.  Structure and diameter-dependent bond lengths of a multi-walled carbon nanotube revealed by electron diffraction , 2009 .

[45]  A. Heuberger,et al.  Anisotropic Etching of Crystalline Silicon in Alkaline Solutions I . Orientation Dependence and Behavior of Passivation Layers , 1990 .

[46]  F. Hennrich,et al.  Simultaneous detection of Raman scattering and near-infrared photoluminescence in one imaging microscope. , 2012, The Review of scientific instruments.

[47]  Jesse M. Kinder,et al.  On-chip Rayleigh imaging and spectroscopy of carbon nanotubes. , 2011, Nano letters.

[48]  A. Krasheninnikov,et al.  Adsorption and migration of carbon adatoms on carbon nanotubes: Density-functional ab initio and tight-binding studies , 2004 .

[49]  H. Lang,et al.  How the doors to the nanoworld were opened , 2006, Nature nanotechnology.

[50]  H. Dai,et al.  Self-oriented regular arrays of carbon nanotubes and their field emission properties , 1999, Science.

[51]  N. Berova,et al.  Racemic single-walled carbon nanotubes exhibit circular dichroism when wrapped with DNA. , 2006, Journal of the American Chemical Society.

[52]  T. Yamabe,et al.  PI -BAND CONTRIBUTION TO THE OPTICAL PROPERTIES OF CARBON NANOTUBES : EFFECTS OF CHIRALITY , 1998 .

[53]  L. Qin,et al.  Accurate determination of atomic structure of multiwalled carbon nanotubes by nondestructive nanobeam electron diffraction , 2005 .

[54]  M. Dresselhaus,et al.  Stokes and anti-Stokes double resonance Raman scattering in two-dimensional graphite , 2002 .

[55]  M. Cardona,et al.  Raman spectroscopy of vibrations in superlattices , 1989 .

[56]  J. Zuo,et al.  Atomic Resolution Imaging of a Carbon Nanotube from Diffraction Intensities , 2003, Science.

[57]  H. Kataura,et al.  Optical and Conductive Characteristics of Metallic Single-Wall Carbon Nanotubes with Three Basic Colors; Cyan, Magenta, and Yellow , 2008 .

[58]  Makoto Kanda,et al.  Large-scale separation of metallic and semiconducting single-walled carbon nanotubes. , 2005, Journal of the American Chemical Society.

[59]  A. Rinzler,et al.  An Integrated Logic Circuit Assembled on a Single Carbon Nanotube , 2006, Science.

[60]  S. Iijima,et al.  Direct evidence for atomic defects in graphene layers , 2004, Nature.

[61]  N. Ishigami,et al.  Crystal plane dependent growth of aligned single-walled carbon nanotubes on sapphire. , 2008, Journal of the American Chemical Society.

[62]  Fotios Papadimitrakopoulos,et al.  Brightly Fluorescent Single-Walled Carbon Nanotubes via an Oxygen-Excluding Surfactant Organization , 2009, Science.

[63]  Philip Kim,et al.  Structure and Electronic Properties of Carbon Nanotubes , 2000 .

[64]  S. Iijima,et al.  Imaging active topological defects in carbon nanotubes. , 2007, Nature nanotechnology.

[65]  Traian Dumitrica,et al.  Symmetry-, time-, and temperature-dependent strength of carbon nanotubes. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Wei Ji,et al.  Real-Space Identification of Intermolecular Bonding with Atomic Force Microscopy , 2013, Science.

[67]  Charles M. Lieber,et al.  Structural ( n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. , 2001, Physical review letters.

[68]  Liming Xie,et al.  Chiral structure determination of aligned single-walled carbon nanotubes on graphite surface. , 2013, Nano letters.

[69]  Mark C. Hersam,et al.  Sorting carbon nanotubes by electronic structure using density differentiation , 2006, Nature nanotechnology.

[70]  Charles M. Lieber,et al.  Probing the electronic trigonal warping effect in individual single-wall carbon nanotubes using phonon spectra , 2002 .

[71]  Yasumitsu Miyata,et al.  Chiral-angle distribution for separated single-walled carbon nanotubes. , 2008, Nano letters.

[72]  R. Baughman,et al.  Carbon Nanotubes: Present and Future Commercial Applications , 2013, Science.

[73]  Stephen K. Doorn,et al.  Chiral selectivity in the charge-transfer bleaching of single-walled carbon-nanotube spectra , 2005, Nature materials.

[74]  M. Picher,et al.  Direct Evidence of Atomic Structure Conservation Along Ultra-Long Carbon Nanotubes , 2012 .

[75]  Chongwu Zhou,et al.  Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire. , 2005, Journal of the American Chemical Society.

[76]  Yagang Yao,et al.  "Cloning" of single-walled carbon nanotubes via open-end growth mechanism. , 2009, Nano letters.

[77]  M. Dresselhaus,et al.  Resonance Raman spectra of carbon nanotubes by cross-polarized light. , 2003, Physical review letters.

[78]  D. Wales,et al.  Theoretical studies of icosahedral C60 and some related species , 1986 .

[79]  Juan-Yu Yang,et al.  Spectroscopic characterization of the chiral structure of individual single-walled carbon nanotubes and the edge structure of isolated graphene nanoribbons. , 2013, Small.

[80]  Angel Rubio,et al.  Direct Imaging of Covalent Bond Structure in Single-Molecule Chemical Reactions , 2013, Science.

[81]  R. Telling,et al.  Wigner defects bridge the graphite gap , 2003, Nature materials.

[82]  A. Krasheninnikov,et al.  Engineering of nanostructured carbon materials with electron or ion beams. , 2007, Nature materials.

[83]  Jean-Christophe Charlier,et al.  Electronic properties of carbon nanotubes containing defects , 1997 .

[84]  Russell M. Taylor,et al.  Gearlike rolling motion mediated by commensurate contact: Carbon nanotubes on HOPG , 2000 .

[85]  J. Maultzsch,et al.  Phonon Dispersion in Graphite , 2004 .

[86]  M. Dresselhaus,et al.  Carbon fibers based on C60 and their symmetry. , 1992, Physical review. B, Condensed matter.

[87]  J. Zuo,et al.  Structure determination of individual single-wall carbon nanotubes by nanoarea electron diffraction , 2003 .

[88]  Jie Liu,et al.  Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. , 2008, Journal of the American Chemical Society.

[89]  Angus I Kirkland,et al.  Resolving strain in carbon nanotubes at the atomic level. , 2011, Nature materials.

[90]  J. Robertson,et al.  A review of methods for the accurate determination of the chiral indices of carbon nanotubes from electron diffraction patterns , 2011 .

[91]  M. Dresselhaus,et al.  Measuring the uniaxial strain of individual single-wall carbon nanotubes: resonance Raman spectra of atomic-force-microscope modified single-wall nanotubes. , 2004, Physical review letters.

[92]  J. Rogers,et al.  Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. , 2005, Small.

[93]  W. Milne,et al.  Photoluminescence spectroscopy of carbon nanotube bundles: evidence for exciton energy transfer. , 2007, Physical review letters.

[94]  C. Kane,et al.  Direct measurement of the polarized optical absorption cross section of single-wall carbon nanotubes. , 2004, Physical review letters.

[95]  M. Dresselhaus,et al.  Photoluminescence intensity of single-wall carbon nanotubes , 2006 .

[96]  Hiroki Ago,et al.  Aligned growth of isolated single-walled carbon nanotubes programmed by atomic arrangement of substrate surface , 2005 .

[97]  Qiang Zhang,et al.  Optical visualization of individual ultralong carbon nanotubes by chemical vapour deposition of titanium dioxide nanoparticles , 2013, Nature Communications.

[98]  D. Chia,et al.  Direct electronic detection of prostate-specific antigen in serum. , 2007, Small.

[99]  A. Ferrari,et al.  Molar Extinction Coefficient of Single-Wall Carbon Nanotubes , 2011 .

[100]  Optical circular dichroism of single-wall carbon nanotubes , 2005, cond-mat/0510651.

[101]  L. Qin,et al.  Symmetry of electron diffraction from single-walled carbon nanotubes , 2004 .

[102]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[103]  S. Akita,et al.  Visualization of Horizontally-Aligned Single-Walled Carbon Nanotube Growth with 13C/12C Isotopes , 2008 .

[104]  S. Bachilo,et al.  Structure-dependent fluorescence efficiencies of individual single-walled carbon nanotubes. , 2007, Nano letters.

[105]  A. Krasheninnikov,et al.  Magnetic properties and diffusion of adatoms on a graphene sheet. , 2003, Physical review letters.

[106]  A. Ismach,et al.  Self-organized nanotube serpentines. , 2008, Nature nanotechnology.

[107]  S. Amelinckx,et al.  Electron diffraction and microscopy of nanotubes , 1999 .

[108]  L. Cognet,et al.  Luminescence decay and the absorption cross section of individual single-walled carbon nanotubes. , 2008, Physical Review Letters.

[109]  Joondong Kim,et al.  Continuous extraction of highly pure metallic single-walled carbon nanotubes in a microfluidic channel. , 2008, Nano letters.

[110]  M. Sfeir,et al.  Probing Electronic Transitions in Individual Carbon Nanotubes by Rayleigh Scattering , 2004, Science.

[111]  Wei-Hung Chiang,et al.  Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning Ni(x)Fe(1-x) nanoparticles. , 2009, Nature materials.

[112]  Patrick R. Briddon,et al.  Structure and energetics of the vacancy in graphite , 2003 .

[113]  M. Anantram,et al.  Observation and Modeling of Single Wall Carbon Nanotube Bend Junctions , 1998 .

[114]  X. Bai,et al.  Intrinsic radial breathing oscillation in suspended single-walled carbon nanotubes , 2011 .

[115]  Haishan Zeng,et al.  CORRIGENDUM: A Method for accurate in vivo micro-Raman spectroscopic measurements under guidance of advanced microscopy imaging , 2013, Scientific Reports.

[116]  Pablo Jarillo-Herrero,et al.  STM Spectroscopy of ultra-flat graphene on hexagonal boron nitride , 2011, 1102.2642.

[117]  G. Binnig,et al.  Tunneling through a controllable vacuum gap , 1982 .

[118]  Ran Liu,et al.  Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions. , 2007, Nature materials.

[119]  J. Keinonen,et al.  Formation of Ion Irradiation-Induced Small-Scale Defects on Graphite Surfaces. , 1996, Physical review letters.

[120]  M. Dresselhaus,et al.  Competing spring constant versus double resonance effects on the properties of dispersive modes in isolated single-wall carbon nanotubes , 2003 .

[121]  John A Rogers,et al.  Spatially selective guided growth of high-coverage arrays and random networks of single-walled carbon nanotubes and their integration into electronic devices. , 2006, Journal of the American Chemical Society.

[122]  R. Feenstra,et al.  4 – METHODS OF TUNNELING SPECTROSCOPY , 1993 .

[123]  Weidian C. Shen,et al.  Measurement of the local density of states on a metal surface: Scanning tunneling spectroscopic imaging of Au(111) , 1990 .

[124]  S. Louie,et al.  An atlas of carbon nanotube optical transitions. , 2012, Nature nanotechnology.

[125]  Riichiro Saito,et al.  Trigonal warping effect of carbon nanotubes , 2000 .

[126]  Pavel Nikolaev,et al.  ELECTRON NANO-DIFFRACTION STUDY OF CARBON SINGLE-WALLED NANOTUBE ROPES , 1997 .

[127]  J. Robertson,et al.  Transport measurements on carbon nanotubes structurally characterized by electron diffraction , 2011 .

[128]  M. Sakata,et al.  Thermal expansion of single-walled carbon nanotube (SWNT) bundles: X-ray diffraction studies , 2001 .

[129]  R. Superfine,et al.  Nanometre-scale rolling and sliding of carbon nanotubes , 1999, Nature.

[130]  L. Qin,et al.  Electron diffraction from elliptical nanotubes , 2005 .

[131]  Zhongfan Liu,et al.  Raman spectroscopy of strained single-walled carbon nanotubes. , 2009, Chemical communications.

[132]  P. Lambin,et al.  Energetics of bent carbon nanotubes , 1998 .

[133]  Lijun Wu,et al.  Optical Spectroscopy of Individual Single-Walled Carbon Nanotubes of Defined Chiral Structure , 2006, Science.

[134]  H. Kataura,et al.  Chirality fingerprinting and geometrical determination of single-walled carbon nanotubes: Analysis of fine structure of X-ray diffraction pattern , 2014 .

[135]  Jin Zhang,et al.  Lattice-directed growth of single-walled carbon nanotubes with controlled geometries on surface , 2012 .

[136]  J. Robertson,et al.  Device fabrication with precisely placed carbon nanotubes of known chiral vector , 2010 .

[137]  A. Jorio,et al.  The role of environmental effects on the optical transition energies and radial breathing mode frequency of single wall carbon nanotubes , 2008 .

[138]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[139]  L. Mleczko,et al.  Carbon nanotubes: an example of multiscale development--a mechanistic view from the subnanometer to the meter scale. , 2013, Angewandte Chemie.

[140]  V. C. Moore,et al.  Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes , 2002, Science.

[141]  B. Spivak,et al.  Chirality effects in carbon nanotubes , 2002 .

[142]  J. Maultzsch,et al.  Tight-binding description of graphene , 2002 .

[143]  D. Milkie,et al.  Photoluminescence from intertube carrier migration in single-walled carbon nanotube bundles. , 2006, Nano letters.

[144]  L. Novotný,et al.  Simultaneous Fluorescence and Raman Scattering from Single Carbon Nanotubes , 2003, Science.

[145]  M. Dresselhaus,et al.  Steplike dispersion of the intermediate-frequency Raman modes in semiconducting and metallic carbon nanotubes , 2005 .

[146]  Ariel Orellana,et al.  Correction: Corrigendum: ER-localized auxin transporter PIN8 regulates auxin homoeostasis and male gametophyte development in Arabidopsis , 2013, Nature Communications.

[147]  Y. H. Zhao,et al.  Sustained Growth of Ultralong Carbon Nanotube Arrays for Fiber Spinning , 2006 .

[148]  A. Ismach,et al.  Orthogonal self-assembly of carbon nanotube crossbar architectures by simultaneous graphoepitaxy and field-directed growth. , 2006, Nano letters.

[149]  Electronic Density of States of Atomically Resolved Single-Walled Carbon Nanotubes: Van Hove Singularities and End States , 1998, cond-mat/9812408.

[150]  Toshinari Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[151]  L. Qin,et al.  Determination of the chiral indices (n,m) of carbon nanotubes by electron diffraction. , 2007, Physical chemistry chemical physics : PCCP.

[152]  Philip Kim,et al.  Single-walled carbon nanotube probes for high-resolution nanostructure imaging , 1998 .

[153]  H. Kataura,et al.  Helicity and packing of single-walled carbon nanotubes studied by electron nanodiffraction , 1997 .

[154]  K. Hata,et al.  Nature of the constant factor in the relation between radial breathing mode frequency and tube diameter for single-wall carbon nanotubes. Phys Rev B 77:241403 , 2008 .

[155]  C. Jin,et al.  Vacancy migrations in carbon nanotubes. , 2008, Nano letters.

[156]  R. Smalley,et al.  Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes , 2002, Science.

[157]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[158]  S. Reich,et al.  Chirality dependence of the density-of-states singularities in carbon nanotubes , 2000 .

[159]  Raman modes of index-identified freestanding single-walled carbon nanotubes. , 2005, Physical review letters.

[160]  Riichiro Saito,et al.  Raman spectroscopy of carbon nanotubes , 2005 .

[161]  Jie Liu,et al.  Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. , 2003, Journal of the American Chemical Society.

[162]  Jiaqi Huang,et al.  100 mm Long, Semiconducting Triple‐Walled Carbon Nanotubes , 2010, Advanced materials.

[163]  J. Robertson,et al.  Investigating the diameter-dependent stability of single-walled carbon nanotubes. , 2009, ACS nano.

[164]  Raman intensity mapping of single-walled carbon nanotubes , 2007 .

[165]  Jacques Lefebvre,et al.  Photoluminescence and Förster Resonance Energy Transfer in Elemental Bundles of Single-Walled Carbon Nanotubes , 2009 .

[166]  Y. Homma,et al.  Simultaneous measurement of photoluminescence and Raman scattering spectra from suspended single‐walled carbon nanotubes , 2012 .

[167]  M. Dresselhaus,et al.  Second-order harmonic and combination modes in graphite, single-wall carbon nanotube bundles, and isolated single-wall carbon nanotubes , 2002 .

[168]  Ming Su,et al.  A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity , 2000 .

[169]  K. Jiang,et al.  Direct identification of metallic and semiconducting single-walled carbon nanotubes in scanning electron microscopy. , 2012, Nano letters.

[170]  How does the substrate affect the Raman and excited state spectra of a carbon nanotube? , 2009, 0902.1510.

[171]  Zhongfan Liu,et al.  Tuning the Diameter of Single-Walled Carbon Nanotubes by Temperature-Mediated Chemical Vapor Deposition , 2009 .

[172]  J. Zuo,et al.  Electrical transport in small bundles of single-walled carbon nanotubes: Intertube interaction and effects of tube deformation , 2010, 1010.1629.