Radiological Source Detection and Localisation Using Bayesian Techniques

The problem considered in this paper is detection and estimation of multiple radiation sources using a time series of radiation counts from a collection of sensors. A Bayesian framework is adopted. Source detection is approached as a model selection problem in which competing models are compared using partial Bayes factors. Given the number of sources, the posterior mean is the minimum mean square error estimator of the source parameters. Exact calculation of the partial Bayes factors and the posterior mean is not possible due to the presence of intractable integrals. Importance sampling using progressive correction is proposed as a computationally efficient method for approximating these integrals. Previously proposed algorithms have been restricted to one or two sources. A simulation analysis shows that the proposed methods can detect and accurately estimate the parameters of four sources with reasonable computational expense.

[1]  A. O'Hagan,et al.  Fractional Bayes factors for model comparison , 1995 .

[2]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[3]  Christophe Andrieu,et al.  Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC , 1999, IEEE Trans. Signal Process..

[4]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .

[5]  Alan D. Martin,et al.  An Introduction to Radiation Protection , 1996, Springer US.

[6]  James P. Reilly,et al.  Particle filters for tracking an unknown number of sources , 2002, IEEE Trans. Signal Process..

[7]  J. Berger,et al.  The Intrinsic Bayes Factor for Model Selection and Prediction , 1996 .

[8]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[9]  B. Ristic,et al.  On Localisation of a Radiological Point Source , 2007, 2007 Information, Decision and Control.

[10]  D. Torney,et al.  Distributed sensor networks for detection of mobile radioactive sources , 2004, IEEE Transactions on Nuclear Science.

[11]  D. Torney,et al.  Radioactive source detection by sensor networks , 2005, IEEE Transactions on Nuclear Science.

[12]  J. Marin,et al.  Population Monte Carlo , 2004 .

[13]  Tim B. Swartz,et al.  Approximating Integrals Via Monte Carlo and Deterministic Methods , 2000 .

[14]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[15]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[16]  Petar M. Djuric,et al.  Model selection based on Bayesian predictive densities and multiple data records , 1994, IEEE Trans. Signal Process..

[17]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[18]  M. West Approximating posterior distributions by mixtures , 1993 .

[19]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[20]  H. Akaike A new look at the statistical model identification , 1974 .

[21]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[22]  Christian Musso,et al.  Improving Regularised Particle Filters , 2001, Sequential Monte Carlo Methods in Practice.

[23]  N. Chopin A sequential particle filter method for static models , 2002 .

[24]  M. Evans Chaining Via Annealing , 1991 .

[25]  Mark R. Morelande,et al.  Bayesian node localisation in wireless sensor networks , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[26]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[27]  S. Landsberger,et al.  Measurement and detection of radiation , 1983 .

[28]  D. Lindley A STATISTICAL PARADOX , 1957 .

[29]  N. Lazar,et al.  Methods and Criteria for Model Selection , 2004 .

[30]  Kenneth R. Muske,et al.  Least squares estimation techniques for position tracking of radioactive sources , 2001, Autom..

[31]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[32]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[33]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[34]  Mark R. Morelande,et al.  Detection and parameter estimation of multiple radioactive sources , 2007, 2007 10th International Conference on Information Fusion.

[35]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.