Search Result Diversification Based on Query Facets

In search engines, different users may search for different information by issuing the same query. To satisfy more users with limited search results, search result diversification re-ranks the results to cover as many user intents as possible. Most existing intent-aware diversification algorithms recognize user intents as subtopics, each of which is usually a word, a phrase, or a piece of description. In this paper, we leverage query facets to understand user intents in diversification, where each facet contains a group of words or phrases that explain an underlying intent of a query. We generate subtopics based on query facets and propose faceted diversification approaches. Experimental results on the public TREC 2009 dataset show that our faceted approaches outperform state-of-the-art diversification models.

[1]  Arnold L. Rosenberg,et al.  Finding topic words for hierarchical summarization , 2001, SIGIR '01.

[2]  M. de Rijke,et al.  Fusion helps diversification , 2014, SIGIR.

[3]  W. Bruce Croft,et al.  Diversity by proportionality: an election-based approach to search result diversification , 2012, SIGIR '12.

[4]  Padhraic Smyth,et al.  Text-based measures of document diversity , 2013, KDD.

[5]  Filip Radlinski,et al.  Learning diverse rankings with multi-armed bandits , 2008, ICML '08.

[6]  Thorsten Joachims,et al.  Predicting diverse subsets using structural SVMs , 2008, ICML '08.

[7]  Wai Lam,et al.  An unsupervised topic segmentation model incorporating word order , 2013, SIGIR.

[8]  Xueqi Cheng,et al.  Learning for search result diversification , 2014, SIGIR.

[9]  Fuji Ren,et al.  Search Result Diversification via Filling Up Multiple Knapsacks , 2014, CIKM.

[10]  Jade Goldstein-Stewart,et al.  The Use of MMR, Diversity-Based Reranking for Reordering Documents and Producing Summaries , 1998, SIGIR Forum.

[11]  Jade Goldstein-Stewart,et al.  The use of MMR, diversity-based reranking for reordering documents and producing summaries , 1998, SIGIR '98.

[12]  Ji-Rong Wen,et al.  Multi-dimensional search result diversification , 2011, WSDM '11.

[13]  James Allan,et al.  Extracting query facets from search results , 2013, SIGIR.

[14]  Craig MacDonald,et al.  Exploiting query reformulations for web search result diversification , 2010, WWW '10.

[15]  Tao Qin,et al.  Microsoft Research Asia at Web Track and Terabyte Track of TREC 2004 , 2004, TREC.

[16]  Arjen P. de Vries,et al.  Combining implicit and explicit topic representations for result diversification , 2012, SIGIR '12.

[17]  Sreenivas Gollapudi,et al.  Diversifying search results , 2009, WSDM '09.

[18]  Monika Henzinger,et al.  Analysis of a very large web search engine query log , 1999, SIGF.

[19]  Qiang Yang,et al.  Q2C@UST: our winning solution to query classification in KDDCUP 2005 , 2005, SKDD.

[20]  James Allan,et al.  Extending Faceted Search to the General Web , 2014, CIKM.

[21]  Craig MacDonald,et al.  Intent-aware search result diversification , 2011, SIGIR.

[22]  Ji-Rong Wen,et al.  Finding dimensions for queries , 2011, CIKM '11.

[23]  W. Bruce Croft,et al.  Term level search result diversification , 2013, SIGIR.

[24]  John D. Lafferty,et al.  A risk minimization framework for information retrieval , 2006, Inf. Process. Manag..

[25]  Hua Li,et al.  Improving web search results using affinity graph , 2005, SIGIR '05.

[26]  Charles L. A. Clarke,et al.  Novelty and diversity in information retrieval evaluation , 2008, SIGIR '08.

[27]  Qinghua Zheng,et al.  Mining query subtopics from search log data , 2012, SIGIR '12.

[28]  Ji-Rong Wen,et al.  WWW 2007 / Track: Search Session: Personalization A Largescale Evaluation and Analysis of Personalized Search Strategies ABSTRACT , 2022 .

[29]  Christopher D. Manning,et al.  Introduction to Information Retrieval , 2010, J. Assoc. Inf. Sci. Technol..

[30]  David R. Karger,et al.  Less is More Probabilistic Models for Retrieving Fewer Relevant Documents , 2006 .

[31]  Krishna Bharat,et al.  Diversifying web search results , 2010, WWW '10.

[32]  Craig MacDonald,et al.  Selectively diversifying web search results , 2010, CIKM.

[33]  Amanda Spink,et al.  Real life, real users, and real needs: a study and analysis of user queries on the web , 2000, Inf. Process. Manag..

[34]  Ariel Fuxman,et al.  Using the wisdom of the crowds for keyword generation , 2008, WWW.

[35]  Vahab S. Mirrokni,et al.  Diversity maximization under matroid constraints , 2013, KDD.