Development of a linear electrostrictive servo motor

This paper presents a linear electrostrictive servo motor with high resolution and large stroke for ultra-precision motion control. High thrust force is obtained by making use of an electromagnetic clamping mechanism with force magnifying structure in the motor design. An operator alterable iterative learning control algorithm is proposed for the motion control of the motor. A prototype is designed, fabricated and tested. Experimental results show that the prototype has a mechanical resolution of 0.02 μm, yaw error less than 2 μm and maximum thrust force of 30N. Applications of the motor include producing the servo feed motions required in micro electrical discharge machining (micro-EDM) system or as a motion control device for other precision machining systems.