Cost-Sensitive Random Pair Encoding for Multi-Label Classification

We propose a novel cost-sensitive multi-label classification algorithm called cost-sensitive random pair encoding (CSRPE). CSRPE reduces the cost-sensitive multi-label classification problem to many cost-sensitive binary classification problems through the label powerset approach followed by the classic one-versus-one decomposition. While such a naive reduction results in exponentially-many classifiers, we resolve the training challenge of building the many classifiers by random sampling, and the prediction challenge of voting from the many classifiers by nearest-neighbor decoding through casting the one-versus-one decomposition as a special case of error-correcting code. Extensive experimental results demonstrate that CSRPE achieves stable convergence and reaches better performance than other ensemble-learning and error-correcting-coding algorithms for multi-label classification. The results also justify that CSRPE is competitive with state-of-the-art cost-sensitive multi-label classification algorithms for cost-sensitive multi-label classification.

[1]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[2]  John Langford,et al.  Error-Correcting Tournaments , 2009, ALT.

[3]  Grigorios Tsoumakas,et al.  MULAN: A Java Library for Multi-Label Learning , 2011, J. Mach. Learn. Res..

[4]  Grigorios Tsoumakas,et al.  Multi-Label Classification of Music into Emotions , 2008, ISMIR.

[5]  Grigorios Tsoumakas,et al.  Mining Multi-label Data , 2010, Data Mining and Knowledge Discovery Handbook.

[6]  Eyke Hüllermeier,et al.  Bayes Optimal Multilabel Classification via Probabilistic Classifier Chains , 2010, ICML.

[7]  Pedro M. Domingos MetaCost: a general method for making classifiers cost-sensitive , 1999, KDD '99.

[8]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[9]  Andrew W. Moore,et al.  New Algorithms for Efficient High-Dimensional Nonparametric Classification , 2006, J. Mach. Learn. Res..

[10]  Jason Weston,et al.  A kernel method for multi-labelled classification , 2001, NIPS.

[11]  Yoram Singer,et al.  Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers , 2000, J. Mach. Learn. Res..

[12]  Alexandr Andoni,et al.  Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[13]  Hsuan-Tien Lin,et al.  Multilabel Classification Using Error-Correcting Codes of Hard or Soft Bits , 2013, IEEE Transactions on Neural Networks and Learning Systems.

[14]  Eyke Hüllermeier,et al.  Consistent Multilabel Ranking through Univariate Losses , 2012, ICML.

[15]  Hsuan-Tien Lin Reduction from Cost-Sensitive Multiclass Classification to One-versus-One Binary Classification , 2014, ACML.

[16]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[17]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[18]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[19]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[20]  Manik Varma,et al.  FastXML: a fast, accurate and stable tree-classifier for extreme multi-label learning , 2014, KDD.

[21]  Grigorios Tsoumakas,et al.  Random k -Labelsets: An Ensemble Method for Multilabel Classification , 2007, ECML.

[22]  Geoff Holmes,et al.  Classifier chains for multi-label classification , 2009, Machine Learning.

[23]  Grigorios Tsoumakas,et al.  Multilabel Text Classification for Automated Tag Suggestion , 2008 .

[24]  FrankEibe,et al.  Classifier chains for multi-label classification , 2011 .

[25]  Chun-Liang Li,et al.  Condensed Filter Tree for Cost-Sensitive Multi-Label Classification , 2014, ICML.

[26]  Eyke Hüllermeier,et al.  An Exact Algorithm for F-Measure Maximization , 2011, NIPS.

[27]  Grigorios Tsoumakas,et al.  Multi-Label Classification: An Overview , 2007, Int. J. Data Warehous. Min..

[28]  Thomas G. Dietterich,et al.  Solving Multiclass Learning Problems via Error-Correcting Output Codes , 1994, J. Artif. Intell. Res..