Soft robust solutions to possibilistic optimization problems

This paper discusses a class of uncertain optimization problems, in which unknown parameters are modeled by fuzzy intervals. The membership functions of the fuzzy intervals are interpreted as possibility distributions for the values of the uncertain parameters. It is shown how the known concepts of robustness and light robustness, for the interval uncertainty representation of the parameters, can be generalized to choose solutions under the assumed model of uncertainty in the possibilistic setting. Furthermore, these solutions can be computed efficiently for a wide class of problems, in particular for linear programming problems with fuzzy parameters in constraints and objective function. In this paper a theoretical framework is presented and results of some computational tests are shown.

[1]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[2]  Masatoshi Sakawa,et al.  Fuzzy Sets and Interactive Multiobjective Optimization , 1993 .

[3]  Didier Dubois,et al.  Possibility Theory - An Approach to Computerized Processing of Uncertainty , 1988 .

[4]  José L. Verdegay,et al.  Using ranking functions in multiobjective fuzzy linear programming , 2000, Fuzzy Sets Syst..

[5]  Laurent El Ghaoui,et al.  Robust Optimization , 2021, ICORES.

[6]  Didier Dubois,et al.  Fuzzy scheduling: Modelling flexible constraints vs. coping with incomplete knowledge , 2003, Eur. J. Oper. Res..

[7]  José L. Verdegay,et al.  A Survey on Models and Methods for Solving Fuzzy Linear Programming Problems , 2016, Fuzzy Logic in Its 50th Year.

[8]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[9]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[10]  Yinyu Ye,et al.  Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems , 2010, Oper. Res..

[11]  Peter Kall,et al.  Stochastic Linear Programming , 1975 .

[12]  Weldon A. Lodwick,et al.  Fuzzy Optimization , 2009, Encyclopedia of Complexity and Systems Science.

[13]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[14]  Stefan Chanas,et al.  On the equivalence of two optimization methods for fuzzy linear programming problems , 2000, Eur. J. Oper. Res..

[15]  Hidetomo Ichihashi,et al.  Some properties of extended fuzzy preference relations using modalities , 1992, Inf. Sci..

[16]  Taehan Lee,et al.  A short note on the robust combinatorial optimization problems with cardinality constrained uncertainty , 2014, 4OR.

[17]  Melvyn Sim,et al.  Distributionally Robust Optimization and Its Tractable Approximations , 2010, Oper. Res..

[18]  Iain Dunning,et al.  Computing in Operations Research Using Julia , 2013, INFORMS J. Comput..

[19]  Adam Kasperski,et al.  Discrete Optimization with Interval Data - Minmax Regret and Fuzzy Approach , 2008, Studies in Fuzziness and Soft Computing.

[20]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[21]  Arkadi Nemirovski,et al.  Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..

[22]  Melvyn Sim,et al.  Robust discrete optimization and network flows , 2003, Math. Program..

[23]  Anita Schöbel,et al.  Generalized light robustness and the trade-off between robustness and nominal quality , 2014, Math. Methods Oper. Res..

[24]  Milan Vlach,et al.  Satisficing solutions and duality in interval and fuzzy linear programming , 2003, Fuzzy Sets Syst..

[25]  Masahiro Inuiguchi,et al.  Robust-Soft Solutions in Linear Optimization Problems with Fuzzy Parameters , 2016 .

[26]  Didier Dubois,et al.  Possibility theory and statistical reasoning , 2006, Comput. Stat. Data Anal..

[27]  Allen L. Soyster,et al.  Technical Note - Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming , 1973, Oper. Res..

[28]  Masahiro Inuiguchi,et al.  Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem , 2000, Fuzzy Sets Syst..

[29]  Didier Dubois,et al.  Probability-Possibility Transformations, Triangular Fuzzy Sets, and Probabilistic Inequalities , 2004, Reliab. Comput..

[30]  Masahiro Inuiguchi,et al.  Robust optimization under softness in a fuzzy linear programming problem , 1998, Int. J. Approx. Reason..

[31]  R. Słowiński,et al.  Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty , 1990, Theory and Decision Library.

[32]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[33]  Matteo Fischetti,et al.  Light Robustness , 2009, Robust and Online Large-Scale Optimization.

[34]  J. Ramík,et al.  Generalized Concavity in Fuzzy Optimization and Decision Analysis , 2001 .

[35]  Jaroslav Ramík,et al.  Duality in fuzzy linear programming with possibility and necessity relations , 2006, Fuzzy Sets Syst..

[36]  Mir Saman Pishvaee,et al.  Robust possibilistic programming for socially responsible supply chain network design: A new approach , 2012, Fuzzy Sets Syst..

[37]  Baoding Liu,et al.  Fuzzy random chance-constrained programming , 2001, IEEE Trans. Fuzzy Syst..

[38]  Marc Roubens,et al.  Ranking and defuzzification methods based on area compensation , 1996, Fuzzy Sets Syst..