Equivalence Principle Implications of Modified Gravity Models

Theories that attempt to explain the observed cosmic acceleration by modifying general relativity all introduce a new scalar degree of freedom that is active on large scales, but is screened on small scales to match experiments. We demonstrate that if such screening occurs via the chameleon mechanism, such as in f(R) theory, it is possible to have order unity violation of the equivalence principle, despite the absence of explicit violation in the microscopic action. Namely, extended objects such as galaxies or constituents thereof do not all fall at the same rate. The chameleon mechanism can screen the scalar charge for large objects but not for small ones (large/small is defined by the depth of the gravitational potential, and is controlled by the scalar coupling). This leads to order one fluctuations in the ratio of the inertial mass to gravitational mass. We provide derivations in both Einstein and Jordan frames. In Jordan frame, it is no longer true that all objects move on geodesics; only unscreened ones, such as test particles, do. In contrast, if the scalar screening occurs via strong coupling, such as in the DGP braneworld model, equivalence principle violation occurs at a much reduced level. We propose several observational tests of the chameleon mechanism: 1. small galaxies should accelerate faster than large galaxies, even in environments where dynamical friction is negligible; 2. voids defined by small galaxies would appear larger compared to standard expectations; 3. stars and diffuse gas in small galaxies should have different velocities, even if they are on the same orbits; 4. lensing and dynamical mass estimates should agree for large galaxies but disagree for small ones. We discuss possible pitfalls in some of these tests. The cleanest is the third one where mass estimate from HI rotational velocity could exceed that from stars by 30% or more. To avoid blanket screening of all objects, the most promising place to look is in voids.

[1]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[2]  Alexey Vikhlinin,et al.  Cluster constraints on f (R) gravity , 2009, 0908.2457.

[3]  R. Scoccimarro,et al.  Large-scale structure in brane-induced gravity. II. Numerical simulations , 2009, 0906.4548.

[4]  R. Scoccimarro Large-scale structure in brane-induced gravity. I. Perturbation theory , 2009, 0906.4545.

[5]  F. Schmidt Self-Consistent Cosmological Simulations of DGP Braneworld Gravity , 2009, 0905.0858.

[6]  G. A. Moellenbrock,et al.  TRIGONOMETRIC PARALLAXES OF MASSIVE STAR-FORMING REGIONS. VI. GALACTIC STRUCTURE, FUNDAMENTAL PARAMETERS, AND NONCIRCULAR MOTIONS , 2009, 0902.3913.

[7]  P. Peebles,et al.  Galaxy satellites and the weak equivalence principle , 2009, 0902.3452.

[8]  K. Koyama,et al.  Non-linear Evolution of Matter Power Spectrum in Modified Theory of Gravity , 2009, 0902.0618.

[9]  B. Gillespie,et al.  The Apache Point Observatory Lunar Laser-ranging Operation (APOLLO): Two Years of Millimeter-Precision Measurements of the Earth-Moon Range , 2009 .

[10]  Wayne Hu,et al.  Nonlinear evolution of f ( R ) cosmologies. III. Halo statistics , 2008, 0812.0545.

[11]  R. Rattazzi,et al.  Galileon as a local modification of gravity , 2008, 0811.2197.

[12]  M. Trodden,et al.  Constraining Interactions in Cosmology's Dark Sector , 2008, 0808.1105.

[13]  H. Oyaizu,et al.  Non-linear evolution of f(R) cosmologies I: methodology , 2008, 0807.2449.

[14]  M. Lima,et al.  N on-linear evolution of f(R) cosm ologies II:power spectrum , 2008, 0807.2462.

[15]  C. V. D. Bruck,et al.  f(R) gravity and chameleon theories , 2008, 0806.3415.

[16]  T. Sotiriou,et al.  f(R) Theories Of Gravity , 2008, 0805.1726.

[17]  J. Tinker,et al.  THE VOID PHENOMENON EXPLAINED , 2008, 0804.2475.

[18]  L. Hui,et al.  Evolution of galaxy bias, generalized , 2008 .

[19]  L. Hui,et al.  Pseudoredundant vacuum energy , 2008, 0801.4526.

[20]  E. Elizalde,et al.  Class of viable modified f(R) gravities describing inflation and the onset of accelerated expansion , 2007, 0712.4017.

[21]  S. Capozziello,et al.  Solar system and equivalence principle constraints on f(R) gravity by the chameleon approach , 2007, 0712.2268.

[22]  L. Hui,et al.  The Evolution of Bias - Generalized , 2007, 0712.1162.

[23]  Scott Dodelson,et al.  Probing gravity at cosmological scales by measurements which test the relationship between gravitational lensing and matter overdensity. , 2007, Physical review letters.

[24]  S. Liberati,et al.  Theory of gravitation theories: a no-progress report , 2007, 0707.2748.

[25]  Wayne Hu,et al.  Models of f(R) Cosmic Acceleration that Evade Solar-System Tests , 2007, 0705.1158.

[26]  J. Khoury,et al.  Degravitation of the cosmological constant and graviton width , 2007, hep-th/0703027.

[27]  M. Kamionkowski,et al.  Tidal tails test the equivalence principle in the dark-matter sector , 2006, astro-ph/0608095.

[28]  R. Rattazzi,et al.  Causality, analyticity and an IR obstruction to UV completion , 2006, hep-th/0602178.

[29]  James G. Williams,et al.  Lunar laser ranging tests of the equivalence principle , 2005, 1203.2150.

[30]  J. Cembranos,et al.  The Newtonian limit at intermediate energies , 2005, gr-qc/0507039.

[31]  T. Chiba Generalized gravity and a ghost , 2005, gr-qc/0502070.

[32]  S. Carroll,et al.  Cosmology of generalized modified gravity models , 2004, Physical Review D.

[33]  S. Dubovsky Phases of massive gravity , 2004 .

[34]  I. Rothstein,et al.  Effective field theory of gravity for extended objects , 2004, hep-th/0409156.

[35]  P. Peebles,et al.  Cosmology with a dynamically screened scalar interaction in the dark sector , 2004, hep-th/0407097.

[36]  R. Rattazzi,et al.  Classical and Quantum Consistency of the DGP Model , 2004, hep-th/0404159.

[37]  Hsin-Chia Cheng,et al.  Ghost condensation and a consistent infrared modification of gravity , 2003, hep-th/0312099.

[38]  Bhasker K. Moorthy,et al.  The Rotation Curves of Dwarf Galaxies: A Problem for Cold Dark Matter? , 2003, astro-ph/0311020.

[39]  J. Khoury,et al.  Chameleon Cosmology , 2003, astro-ph/0309411.

[40]  J. Khoury,et al.  Chameleon fields: awaiting surprises for tests of gravity in space. , 2003, Physical review letters.

[41]  S. Nojiri,et al.  Modified gravity with negative and positive powers of the curvature: Unification of the inflation and of the cosmic acceleration , 2003, hep-th/0307288.

[42]  T. Chiba 1/R gravity and scalar-tensor gravity , 2003, astro-ph/0307338.

[43]  P. Peebles,et al.  Interacting Dark Matter and Dark Energy , 2003, astro-ph/0307316.

[44]  S. Carroll,et al.  Is Cosmic Speed-Up Due to New Gravitational Physics? , 2003, astro-ph/0306438.

[45]  J. Barrow,et al.  Varying alpha in a more realistic Universe , 2003, astro-ph/0306047.

[46]  R. Rattazzi,et al.  Strong Interactions and Stability in the DGP Model , 2003, hep-th/0303116.

[47]  H. Georgi,et al.  Effective field theory for massive gravitons and gravity in theory space , 2002, hep-th/0210184.

[48]  C. Heiles,et al.  THE MILLENNIUM ARECIBO 21-CM ABSORPTION LINE SURVEY . II . PROPERTIES OF THE WARM AND COLD NEUTRAL MEDIA , 2002 .

[49]  C. Will The Confrontation between General Relativity and Experiment , 2001, Living reviews in relativity.

[50]  P. J. E. Peebles,et al.  The Void Phenomenon , 2001, astro-ph/0101127.

[51]  C. Deffayet Cosmology on a Brane in Minkowski Bulk , 2000, hep-th/0010186.

[52]  A. Klypin,et al.  Velocity Bias in a Λ Cold Dark Matter Model , 2000 .

[53]  M. Porrati,et al.  4D Gravity on a Brane in 5D Minkowski Space , 2000, hep-th/0005016.

[54]  A. Klypin,et al.  Velocity bias in a LCDM model , 1999, astro-ph/9907337.

[55]  L. Hui Recovery of the Shape of the Mass Power Spectrum from the Lyα Forest , 1998, astro-ph/9807068.

[56]  A. Hamilton Linear redshift distortions: A Review , 1997, astro-ph/9708102.

[57]  R. Cen,et al.  The Galaxy Pairwise Velocity Dispersion as a Function of Local Density , 1997, astro-ph/9707248.

[58]  L. Hui,et al.  The Statistics of Density Peaks and the Column Density Distribution of the Lyα Forest , 1996, astro-ph/9608157.

[59]  J. Fry The Evolution of Bias , 1996 .

[60]  O. W. Greenberg,et al.  The Quantum Theory of Fields, Vol. 1: Foundations , 1995 .

[61]  S. Weinberg The Quantum Theory of Fields: THE CLUSTER DECOMPOSITION PRINCIPLE , 1995 .

[62]  J. Bekenstein,et al.  Novel "no-scalar-hair" theorem for black holes. , 1995, Physical review. D, Particles and fields.

[63]  J. Frieman,et al.  Dark matter and the equivalence principle. , 1993, Science.

[64]  Stubbs Experimental limits on any long range nongravitational interaction between dark matter and ordinary matter. , 1993, Physical review letters.

[65]  R. Carlberg Cosmological Velocity Bias , 1993, astro-ph/9309021.

[66]  C. Will,et al.  Gravitational Radiation, Close Binary Systems, and the Brans-dicke Theory of Gravity , 1989 .

[67]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[68]  A. Vainshtein,et al.  To the problem of nonvanishing gravitation mass , 1972 .

[69]  K. Nordtvedt Equivalence Principle for Massive Bodies. I. Phenomenology , 1968 .

[70]  S. Weinberg Photons and gravitons in perturbation theory: Derivation of maxwell's and einstein's equations , 1965 .

[71]  Steven Weinberg,et al.  Photons and Gravitons in S-Matrix Theory: Derivation of Charge Conservation and Equality of Gravitational and Inertial Mass , 1964 .

[72]  P. Jordan Zum gegenwärtigen Stand der Diracschen kosmologischen Hypothesen , 1959 .

[73]  Palmer,et al.  Mach's Principle and a Relativistic Theory of Gravitation , 2011 .

[74]  S. Tremaine,et al.  Galactic Dynamics , 2005 .

[75]  L. Hui Recovery of the Shape of the Mass Power Spectrum from the Lyman-alpha Forest , 1998 .

[76]  Donald Hamilton,et al.  The evolving universe. Selected topics on large-scale structure and on the properties of galaxies , 1998 .

[77]  Achim Weiss,et al.  Stellar Structure and Evolution , 1990 .

[78]  Thibault Damour,et al.  THE PROBLEM OF MOTION IN NEWTONIAN AND EINSTEINIAN GRAVITY , 1986 .

[79]  M. Fierz On the physical interpretation of P.Jordan's extended theory of gravitation , 1956 .

[80]  A. Einstein,et al.  The Gravitational equations and the problem of motion , 1938 .