Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package.

Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM) program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein-ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography.

[1]  Pavel Hobza,et al.  On the performance of the semiempirical quantum mechanical PM6 and PM7 methods for noncovalent interactions , 2013 .

[2]  B. Rupp,et al.  Techniques, tools and best practices for ligand electron-density analysis and results from their application to deposited crystal structures. , 2013, Acta crystallographica. Section D, Biological crystallography.

[3]  James J. P. Stewart,et al.  Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters , 2012, Journal of Molecular Modeling.

[4]  Kenneth M Merz,et al.  Conformational Analysis of Free and Bound Retinoic Acid. , 2012, Journal of chemical theory and computation.

[5]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[6]  Krista Joosten,et al.  PDB_REDO: constructive validation, more than just looking for errors , 2012, Acta crystallographica. Section D, Biological crystallography.

[7]  Tjelvar S. G. Olsson,et al.  The good, the bad and the twisted: a survey of ligand geometry in protein crystal structures , 2012, Journal of Computer-Aided Molecular Design.

[8]  Xue Li,et al.  Accurate assessment of the strain energy in a protein‐bound drug using QM/MM X‐ray refinement and converged quantum chemistry , 2011, J. Comput. Chem..

[9]  Lance M. Westerhoff,et al.  Incorporation of the quantum chemical package DivCon into the PHENIX suite , 2011 .

[10]  Clemens Vonrhein,et al.  Better ligand representation in BUSTER protein–complex structure determination , 2011 .

[11]  S. Gore,et al.  Validation of small- and macromolecular X-ray structures: PDB and CCDC collaborations , 2011 .

[12]  Wladek Minor,et al.  X-ray crystallography: assessment and validation of protein–small molecule complexes for drug discovery , 2011, Expert opinion on drug discovery.

[13]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[14]  J. McKerrow,et al.  In Vitro and In Vivo Studies of the Trypanocidal Properties of WRR-483 against Trypanosoma cruzi , 2010, PLoS neglected tropical diseases.

[15]  Lance M. Westerhoff,et al.  Computational alanine scanning with linear scaling semiempirical quantum mechanical methods , 2010, Proteins.

[16]  Kenneth M Merz,et al.  QM/MM X-ray refinement of zinc metalloenzymes. , 2010, Journal of inorganic biochemistry.

[17]  G. Cozier,et al.  Structures of human carbonic anhydrase II/inhibitor complexes reveal a second binding site for steroidal and nonsteroidal inhibitors. , 2010, Biochemistry.

[18]  Xiaohua Zhang,et al.  Quantum Mechanical Pairwise Decomposition Analysis of Protein Kinase B Inhibitors: Validating a New Tool for Guiding Drug Design , 2010, J. Chem. Inf. Model..

[19]  M. Korth,et al.  A Transferable H-Bonding Correction for Semiempirical Quantum-Chemical Methods. , 2010, Journal of chemical theory and computation.

[20]  Vincent B. Chen,et al.  MolProbity: all-atom structure validation for macromolecular crystallography , 2009, Acta crystallographica. Section D, Biological crystallography.

[21]  Robin L. Owen,et al.  Characterization of a Carbon-Carbon Hydrolase from Mycobacterium tuberculosis Involved in Cholesterol Metabolism* , 2009, The Journal of Biological Chemistry.

[22]  Duane E. Williams,et al.  AM1 parameters for the prediction of 1H and 13C NMR chemical shifts in proteins. , 2009, The journal of physical chemistry. A.

[23]  James J. P. Stewart,et al.  Application of the PM6 method to modeling proteins , 2009, Journal of molecular modeling.

[24]  Jindřich Fanfrlík,et al.  Semiempirical Quantum Chemical PM6 Method Augmented by Dispersion and H-Bonding Correction Terms Reliably Describes Various Types of Noncovalent Complexes. , 2009, Journal of chemical theory and computation.

[25]  H. DeLuca,et al.  2-Substituted-16-ene-22-thia-1alpha,25-dihydroxy-26,27-dimethyl-19-norvitamin D3 analogs: Synthesis, biological evaluation, and crystal structure. , 2008, Bioorganic & medicinal chemistry.

[26]  Lance M. Westerhoff,et al.  A critical assessment of the performance of protein-ligand scoring functions based on NMR chemical shift perturbations. , 2007, Journal of medicinal chemistry.

[27]  M. Gilski,et al.  Stereochemical restraints revisited: how accurate are refinement targets and how much should protein structures be allowed to deviate from them? , 2007, Acta Crystallographica Section D: Biological Crystallography.

[28]  Jack Snoeyink,et al.  Nucleic Acids Research Advance Access published April 22, 2007 MolProbity: all-atom contacts and structure validation for proteins and nucleic acids , 2007 .

[29]  Philip R. Evans An introduction to stereochemical restraints , 2006, Acta Crystallographica Section D: Biological Crystallography.

[30]  G. Kleywegt Crystallographic refinement of ligand complexes , 2006, Acta crystallographica. Section D, Biological crystallography.

[31]  A. Nicholls,et al.  Automated ligand placement and refinement with a combined force field and shape potential. , 2006, Acta crystallographica. Section D, Biological crystallography.

[32]  Kenneth M Merz,et al.  Semiempirical Comparative Binding Energy Analysis (SE-COMBINE) of a Series of Trypsin Inhibitors. , 2006, Journal of chemical theory and computation.

[33]  K. Merz,et al.  Large-scale validation of a quantum mechanics based scoring function: predicting the binding affinity and the binding mode of a diverse set of protein-ligand complexes. , 2005, Journal of medicinal chemistry.

[34]  Kenneth M Merz,et al.  Refinement of protein crystal structures using energy restraints derived from linear-scaling quantum mechanics. , 2005, Acta crystallographica. Section D, Biological crystallography.

[35]  Paul Labute,et al.  On the Perception of Molecules from 3D Atomic Coordinates , 2005, J. Chem. Inf. Model..

[36]  Kenneth M. Merz,et al.  QMQSAR: Utilization of a semiempirical probe potential in a field‐based QSAR method , 2005, J. Comput. Chem..

[37]  Dale E Tronrud,et al.  Introduction to macromolecular refinement. , 2004, Methods in molecular biology.

[38]  Kenneth M Merz,et al.  Pose scoring by NMR. , 2004, Journal of the American Chemical Society.

[39]  P. Charifson,et al.  Conformational analysis of drug-like molecules bound to proteins: an extensive study of ligand reorganization upon binding. , 2004, Journal of medicinal chemistry.

[40]  K. Merz,et al.  A quantum mechanics-based scoring function: study of zinc ion-mediated ligand binding. , 2004, Journal of the American Chemical Society.

[41]  M. Lascombe,et al.  The 1.45 A resolution structure of the cryptogein-cholesterol complex: a close-up view of a sterol carrier protein (SCP) active site. , 2002, Acta crystallographica. Section D, Biological crystallography.

[42]  S. L. Dixon,et al.  Linear scaling molecular orbital calculations of biological systems using the semiempirical divide and conquer method , 2000, J. Comput. Chem..

[43]  Dimas Suárez,et al.  Critical assessment of the performance of the semiempirical divide and conquer method for single point calculations and geometry optimizations of large chemical systems , 2000 .

[44]  M. Harding,et al.  The geometry of metal-ligand interactions relevant to proteins. , 1999, Acta crystallographica. Section D, Biological crystallography.

[45]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[46]  S. L. Dixon,et al.  Fast, accurate semiempirical molecular orbital calculations for macromolecules , 1997 .

[47]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[48]  G J Kleywegt,et al.  Phi/psi-chology: Ramachandran revisited. , 1996, Structure.

[49]  S. L. Dixon,et al.  Semiempirical molecular orbital calculations with linear system size scaling , 1996 .

[50]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[51]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[52]  R. Huber,et al.  Accurate Bond and Angle Parameters for X-ray Protein Structure Refinement , 1991 .

[53]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[54]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[55]  P. Adams,et al.  Electronic Reprint Biological Crystallography Automated Ligand Fitting by Core-fragment Fitting and Extension into Density Biological Crystallography Automated Ligand Fitting by Core-fragment Fitting and Extension into Density , 2006 .

[56]  A T Brünger,et al.  Crystallographic refinement by simulated annealing: methods and applications. , 1997, Methods in enzymology.

[57]  G J Kleywegt,et al.  Report of a workshop on the use of statistical validators in protein X-ray crystallography. , 1996, Acta crystallographica. Section D, Biological crystallography.

[58]  Olga Kennard,et al.  Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds , 1987 .

[59]  Paul D Adams,et al.  Electronic Reprint Biological Crystallography Electronic Ligand Builder and Optimization Workbench (elbow ): a Tool for Ligand Coordinate and Restraint Generation Biological Crystallography Electronic Ligand Builder and Optimization Workbench (elbow): a Tool for Ligand Coordinate and Restraint Gener , 2022 .

[60]  Vincent B. Chen,et al.  PHENIX: a comprehensive Python-based system for macromolecular structure solution , 2010, Acta crystallographica. Section D, Biological crystallography.