Adaptive variational multiscale method for the Stokes equations

SUMMARY An adaptive variational multiscale method for the Stokes equations is presented in this paper. We solve the coarse scale problem on the coarse mesh and approximate the fine scale solution by solving a series of local residual equations defined on some local fine grids, which can be implemented in parallel. In addition, we also propose a reliable local a posteriori error estimator and construct an adaptive algorithm based on the corresponding a posterior error estimate. Finally, numerical examples are presented to verify the algorithm.Copyright © 2012 John Wiley & Sons, Ltd.

[1]  Béatrice Rivière,et al.  A two‐grid stabilization method for solving the steady‐state Navier‐Stokes equations , 2006 .

[2]  DAVID KAY,et al.  A Posteriori Error Estimation for Stabilized Mixed Approximations of the Stokes Equations , 1999, SIAM J. Sci. Comput..

[3]  J. Tinsley Oden,et al.  A Posteriori Error Estimators for the Stokes and Oseen Equations , 1997 .

[4]  Feng Shi,et al.  A Posteriori Error Estimates of Stabilization of Low-Order Mixed Finite Elements for Incompressible Flow , 2010, SIAM J. Sci. Comput..

[5]  Feng Shi,et al.  Adaptive variational multiscale methods for incompressible flow based on two local Gauss integrations , 2010, J. Comput. Phys..

[6]  Yanren Hou,et al.  A variational multiscale method based on bubble functions for convection-dominated convection-diffusion equation , 2010, Appl. Math. Comput..

[7]  Volker John,et al.  A Finite Element Variational Multiscale Method for the Navier-Stokes Equations , 2005, SIAM J. Sci. Comput..

[8]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[9]  Max Gunzburger,et al.  Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms , 1989 .

[10]  M. Larson,et al.  Adaptive variational multiscale methods based on a posteriori error estimation: Energy norm estimates for elliptic problems , 2007 .

[11]  Mats G. Larson,et al.  CHALMERS FINITE ELEMENT CENTER , 2022 .

[12]  Feng Shi,et al.  A finite element variational multiscale method for incompressible flows based on two local gauss integrations , 2009, J. Comput. Phys..

[13]  S. Repin,et al.  ON THE FUNCTIONAL TYPE A POSTERIORI ERROR ESTIMATES FOR THE STOKES PROBLEM. , 2004 .

[14]  R. Verfürth A posteriori error estimators for the Stokes equations , 1989 .

[15]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[16]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[17]  Thomas J. R. Hughes,et al.  The Continuous Galerkin Method Is Locally Conservative , 2000 .

[18]  W. Layton,et al.  A connection between subgrid scale eddy viscosity and mixed methods , 2002, Appl. Math. Comput..