Adaptive variational multiscale method for the Stokes equations
暂无分享,去创建一个
[1] Béatrice Rivière,et al. A two‐grid stabilization method for solving the steady‐state Navier‐Stokes equations , 2006 .
[2] DAVID KAY,et al. A Posteriori Error Estimation for Stabilized Mixed Approximations of the Stokes Equations , 1999, SIAM J. Sci. Comput..
[3] J. Tinsley Oden,et al. A Posteriori Error Estimators for the Stokes and Oseen Equations , 1997 .
[4] Feng Shi,et al. A Posteriori Error Estimates of Stabilization of Low-Order Mixed Finite Elements for Incompressible Flow , 2010, SIAM J. Sci. Comput..
[5] Feng Shi,et al. Adaptive variational multiscale methods for incompressible flow based on two local Gauss integrations , 2010, J. Comput. Phys..
[6] Yanren Hou,et al. A variational multiscale method based on bubble functions for convection-dominated convection-diffusion equation , 2010, Appl. Math. Comput..
[7] Volker John,et al. A Finite Element Variational Multiscale Method for the Navier-Stokes Equations , 2005, SIAM J. Sci. Comput..
[8] T. Hughes,et al. The variational multiscale method—a paradigm for computational mechanics , 1998 .
[9] Max Gunzburger,et al. Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms , 1989 .
[10] M. Larson,et al. Adaptive variational multiscale methods based on a posteriori error estimation: Energy norm estimates for elliptic problems , 2007 .
[11] Mats G. Larson,et al. CHALMERS FINITE ELEMENT CENTER , 2022 .
[12] Feng Shi,et al. A finite element variational multiscale method for incompressible flows based on two local gauss integrations , 2009, J. Comput. Phys..
[13] S. Repin,et al. ON THE FUNCTIONAL TYPE A POSTERIORI ERROR ESTIMATES FOR THE STOKES PROBLEM. , 2004 .
[14] R. Verfürth. A posteriori error estimators for the Stokes equations , 1989 .
[15] M. Fortin,et al. A stable finite element for the stokes equations , 1984 .
[16] T. Hughes. Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .
[17] Thomas J. R. Hughes,et al. The Continuous Galerkin Method Is Locally Conservative , 2000 .
[18] W. Layton,et al. A connection between subgrid scale eddy viscosity and mixed methods , 2002, Appl. Math. Comput..