Active Piezoelectric Actuation and Control of Highly Flexible Multifunctional Wings
暂无分享,去创建一个
[1] Raymond T. Stefani,et al. Design of feedback control systems , 1982 .
[2] Daniel J. Inman,et al. Electromechanical comparison of cantilevered beams with multifunctional piezoceramic devices , 2012 .
[3] N. Hagood,et al. Anisotropic Actuation with Piezoelectric Fiber Composites , 1995 .
[4] Nesbitt W. Hagood,et al. Modelling of Piezoelectric Actuator Dynamics for Active Structural Control , 1990 .
[5] Frederic M. Hoblit,et al. Gust Loads on Aircraft: Concepts and Applications , 1988 .
[6] D. Inman,et al. Simultaneous energy harvesting and gust alleviation for a multifunctional composite wing spar using reduced energy control via piezoceramics , 2013 .
[7] Leo Christodoulou,et al. Multifunctional material systems: The first generation , 2003 .
[8] Paul K. Wright,et al. A piezoelectric vibration based generator for wireless electronics , 2004 .
[9] W. Keats Wilkie,et al. An overview of composite actuators with piezoceramic fibers , 2002 .
[10] Wilkie W. Keats,et al. Aeroelastic Analysis of Helicopter Rotor Blades Incorporating Anisotropic Piezoelectric Twist Actuation , 1996 .
[11] Carlos E. S. Cesnik,et al. Active Warping Control of a Joined Wing/Tail Airplane Configuration , 2003 .
[12] Frank L. Lewis,et al. Optimal Control , 1986 .
[13] Carlos E. S. Cesnik,et al. Nonlinear Aeroelasticity of a Very Flexible Blended-Wing-Body Aircraft , 2009 .
[14] Dewey H. Hodges,et al. Flight Dynamics of Highly Flexible Aircraft , 2008 .
[15] Carlos E. S. Cesnik,et al. Nonlinear Aeroelastic Modeling and Analysis of Fully Flexible Aircraft , 2005 .
[16] Daniel J. Inman,et al. Piezoelectric Energy Harvesting , 2011 .
[17] Du Plessis,et al. Modeling and experimental testing of twist actuated single cell composite beams for helicopter blade control , 1996 .
[18] Daniel J. Inman,et al. Introduction to Piezoelectric Energy Harvesting , 2011 .
[19] Chin-Fang Lin. Advanced Flight Control System Design , 1993 .
[20] Carlos E. S. Cesnik,et al. Strain-based geometrically nonlinear beam formulation for modeling very flexible aircraft , 2011 .
[21] Donald McLean,et al. Automatic Flight Control Systems , 1990 .
[22] Carlos E. S. Cesnik,et al. Active Beam Cross-Sectional Modeling , 2001 .
[23] Carlos E. S. Cesnik,et al. Nonlinear Aeroelasticity and Flight Dynamics of High-Altitude Long-Endurance Aircraft , 2001 .
[24] Daniel J. Inman,et al. Issues in mathematical modeling of piezoelectric energy harvesters , 2008 .
[25] Carlos E. S. Cesnik,et al. Dynamic Response of Highly Flexible Flying Wings , 2011 .
[26] Sang-Gook Kim,et al. DESIGN CONSIDERATIONS FOR MEMS-SCALE PIEZOELECTRIC MECHANICAL VIBRATION ENERGY HARVESTERS , 2005 .
[27] Frederic M. Hoblit. Gust Loads Fundamentals , 1988 .
[28] Daniel J. Inman,et al. Estimation of Electric Charge Output for Piezoelectric Energy Harvesting , 2004 .
[29] Miguel Ortega-Morales,et al. Modeling and control of the aeroelastic response of highly flexible active wings , 2000 .
[30] Daniel J. Inman,et al. Multifunctional Unmanned Aerial Vehicle Wing Spar for Low-Power Generation and Storage , 2012 .
[31] E. Crawley,et al. Detailed Models of Piezoceramic Actuation of Beams , 1989 .
[32] Carlos E. S. Cesnik,et al. Modeling of High Aspect Ratio Active Flexible Wings for Roll Control , 2002 .
[33] Mark James Johnson,et al. Finite-State Airloads for Deformable Airfoils on Fixed and Rotating Wings , 1994 .
[34] Natsuki Tsushima,et al. Modeling of Highly Flexible Multifunctional Wings for Energy Harvesting , 2015 .
[35] Aaron A. Bent,et al. Active fiber composite material systems for structural control applications , 1999, Smart Structures.
[36] Donald Paul,et al. THE X-53 A SUMMARY OF THE ACTIVE AEROELASTIC WING FLIGHT RESEARCH PROGRAM , 2007 .
[37] Carlos E. S. Cesnik,et al. Nonlinear Flight Dynamics of Very Flexible Aircraft , 2005 .
[38] Carlos E. S. Cesnik,et al. Structural analysis for designing rotor blades with integral actuators , 1998 .