Active Piezoelectric Actuation and Control of Highly Flexible Multifunctional Wings

Both active actuation and energy harvesting of highly flexible wings using piezoelectric transduction are studied in this paper. The piezoelectric effect is included in a strain-based geometrically nonlinear beam formulation. The resulting structural dynamic equations for multifunctional beams are then coupled with a finite-state unsteady aerodynamic formulation, allowing for piezoelectric energy harvesting and actuation with the nonlinear aeroelastic system. With the development, it is possible to provide an integral aeroelastic and electromechanical solution of concurrent active control and piezoelectric energy harvesting for wing vibrations, with the considering the geometrical nonlinear effects of slender multifunctional wings. In this paper, LQR and LQG controllers are developed for the active control of wing vibrations. The controllers demonstrate effective gust alleviation capabilities. Furthermore, a concurrent active vibration control and energy harvesting can also be realized for the multifunctional wing system with embedded piezoelectric materials.

[1]  Raymond T. Stefani,et al.  Design of feedback control systems , 1982 .

[2]  Daniel J. Inman,et al.  Electromechanical comparison of cantilevered beams with multifunctional piezoceramic devices , 2012 .

[3]  N. Hagood,et al.  Anisotropic Actuation with Piezoelectric Fiber Composites , 1995 .

[4]  Nesbitt W. Hagood,et al.  Modelling of Piezoelectric Actuator Dynamics for Active Structural Control , 1990 .

[5]  Frederic M. Hoblit,et al.  Gust Loads on Aircraft: Concepts and Applications , 1988 .

[6]  D. Inman,et al.  Simultaneous energy harvesting and gust alleviation for a multifunctional composite wing spar using reduced energy control via piezoceramics , 2013 .

[7]  Leo Christodoulou,et al.  Multifunctional material systems: The first generation , 2003 .

[8]  Paul K. Wright,et al.  A piezoelectric vibration based generator for wireless electronics , 2004 .

[9]  W. Keats Wilkie,et al.  An overview of composite actuators with piezoceramic fibers , 2002 .

[10]  Wilkie W. Keats,et al.  Aeroelastic Analysis of Helicopter Rotor Blades Incorporating Anisotropic Piezoelectric Twist Actuation , 1996 .

[11]  Carlos E. S. Cesnik,et al.  Active Warping Control of a Joined Wing/Tail Airplane Configuration , 2003 .

[12]  Frank L. Lewis,et al.  Optimal Control , 1986 .

[13]  Carlos E. S. Cesnik,et al.  Nonlinear Aeroelasticity of a Very Flexible Blended-Wing-Body Aircraft , 2009 .

[14]  Dewey H. Hodges,et al.  Flight Dynamics of Highly Flexible Aircraft , 2008 .

[15]  Carlos E. S. Cesnik,et al.  Nonlinear Aeroelastic Modeling and Analysis of Fully Flexible Aircraft , 2005 .

[16]  Daniel J. Inman,et al.  Piezoelectric Energy Harvesting , 2011 .

[17]  Du Plessis,et al.  Modeling and experimental testing of twist actuated single cell composite beams for helicopter blade control , 1996 .

[18]  Daniel J. Inman,et al.  Introduction to Piezoelectric Energy Harvesting , 2011 .

[19]  Chin-Fang Lin Advanced Flight Control System Design , 1993 .

[20]  Carlos E. S. Cesnik,et al.  Strain-based geometrically nonlinear beam formulation for modeling very flexible aircraft , 2011 .

[21]  Donald McLean,et al.  Automatic Flight Control Systems , 1990 .

[22]  Carlos E. S. Cesnik,et al.  Active Beam Cross-Sectional Modeling , 2001 .

[23]  Carlos E. S. Cesnik,et al.  Nonlinear Aeroelasticity and Flight Dynamics of High-Altitude Long-Endurance Aircraft , 2001 .

[24]  Daniel J. Inman,et al.  Issues in mathematical modeling of piezoelectric energy harvesters , 2008 .

[25]  Carlos E. S. Cesnik,et al.  Dynamic Response of Highly Flexible Flying Wings , 2011 .

[26]  Sang-Gook Kim,et al.  DESIGN CONSIDERATIONS FOR MEMS-SCALE PIEZOELECTRIC MECHANICAL VIBRATION ENERGY HARVESTERS , 2005 .

[27]  Frederic M. Hoblit Gust Loads Fundamentals , 1988 .

[28]  Daniel J. Inman,et al.  Estimation of Electric Charge Output for Piezoelectric Energy Harvesting , 2004 .

[29]  Miguel Ortega-Morales,et al.  Modeling and control of the aeroelastic response of highly flexible active wings , 2000 .

[30]  Daniel J. Inman,et al.  Multifunctional Unmanned Aerial Vehicle Wing Spar for Low-Power Generation and Storage , 2012 .

[31]  E. Crawley,et al.  Detailed Models of Piezoceramic Actuation of Beams , 1989 .

[32]  Carlos E. S. Cesnik,et al.  Modeling of High Aspect Ratio Active Flexible Wings for Roll Control , 2002 .

[33]  Mark James Johnson,et al.  Finite-State Airloads for Deformable Airfoils on Fixed and Rotating Wings , 1994 .

[34]  Natsuki Tsushima,et al.  Modeling of Highly Flexible Multifunctional Wings for Energy Harvesting , 2015 .

[35]  Aaron A. Bent,et al.  Active fiber composite material systems for structural control applications , 1999, Smart Structures.

[36]  Donald Paul,et al.  THE X-53 A SUMMARY OF THE ACTIVE AEROELASTIC WING FLIGHT RESEARCH PROGRAM , 2007 .

[37]  Carlos E. S. Cesnik,et al.  Nonlinear Flight Dynamics of Very Flexible Aircraft , 2005 .

[38]  Carlos E. S. Cesnik,et al.  Structural analysis for designing rotor blades with integral actuators , 1998 .