On the latent state estimation of nonlinear population dynamics using Bayesian and non-Bayesian state-space models

[1]  Iain J Gordon,et al.  Spatial and temporal variability modify density dependence in populations of large herbivores. , 2006, Ecology.

[2]  J. Beck,et al.  Bayesian State and Parameter Estimation of Uncertain Dynamical Systems , 2006 .

[3]  Leonardo A. B. Tôrres,et al.  Using data-driven discrete-time models and the unscented Kalman filter to estimate unobserved variables of nonlinear systems. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  C. Lortie,et al.  LINKING PATTERNS AND PROCESSES IN ALPINE PLANT COMMUNITIES: A GLOBAL STUDY , 2005 .

[5]  A. Ives,et al.  ESTIMATING FLUCTUATING VITAL RATES FROM TIME-SERIES DATA: A CASE STUDY OF APHID BIOCONTROL , 2005 .

[6]  B. Law,et al.  An improved analysis of forest carbon dynamics using data assimilation , 2005 .

[7]  L. C. Barbosa,et al.  Raman, hyperraman, hyper-Rayleigh, two-photon excited luminescence and morphology-dependent-modes in a single optical tweezers system , 2005 .

[8]  Nils Chr. Stenseth,et al.  DENSITY DEPENDENCE IN NORTH AMERICAN DUCKS , 2005 .

[9]  Éric Parent,et al.  A Bayesian state-space modelling framework for fitting a salmon stage-structured population dynamic model to multiple time series of field data , 2004 .

[10]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[11]  James S. Clark,et al.  POPULATION TIME SERIES: PROCESS VARIABILITY, OBSERVATION ERRORS, MISSING VALUES, LAGS, AND HIDDEN STATES , 2004 .

[12]  J. Tamminen Validation of nonlinear inverse algorithms with Markov chain Monte Carlo method , 2004 .

[13]  Pierre Vacher,et al.  Complex lithospheric structure under the central Baltic Shield from surface wave tomography , 2004 .

[14]  M. Hauschild,et al.  Constraints on anomalous quartic gauge boson couplings from nu anti-nu gamma gamma and q anti-q gamma gamma events at LEP2 , 2004 .

[15]  Jürgen Kurths,et al.  The Unscented Kalman Filter, a Powerful Tool for Data Analysis , 2004, Int. J. Bifurc. Chaos.

[16]  Jürgen Kurths,et al.  Nonlinear Dynamical System Identification from Uncertain and Indirect Measurements , 2004, Int. J. Bifurc. Chaos.

[17]  N. Christensen,et al.  Metropolis-Hastings algorithm for extracting periodic gravitational wave signals from laser interferometric detector data , 2004, gr-qc/0402038.

[18]  R. Hilborn,et al.  Fisheries stock assessment and decision analysis: the Bayesian approach , 1997, Reviews in Fish Biology and Fisheries.

[19]  A. Ives,et al.  POPULATION DYNAMICS ACROSS GEOGRAPHICAL RANGES: TIME‐SERIES ANALYSES OF THREE SMALL GAME SPECIES , 2003 .

[20]  Takashi Saitoh,et al.  Seasonality, density dependence, and population cycles in Hokkaido voles , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[21]  S. Lindley,et al.  ESTIMATION OF POPULATION GROWTH AND EXTINCTION PARAMETERS FROM NOISY DATA , 2003 .

[22]  Peter Müller,et al.  INCORPORATING MULTIPLE SOURCES OF STOCHASTICITY INTO DYNAMIC POPULATION MODELS , 2003 .

[23]  A. Doucet,et al.  Parameter estimation in general state-space models using particle methods , 2003 .

[24]  S. Carpenter,et al.  ESTIMATING COMMUNITY STABILITY AND ECOLOGICAL INTERACTIONS FROM TIME‐SERIES DATA , 2003 .

[25]  R. Lande,et al.  Estimating Density Dependence from Population Time Series Using Demographic Theory and Life‐History Data , 2002, The American Naturalist.

[26]  Rudolph van der Merwe,et al.  The Unscented Kalman Filter , 2002 .

[27]  Alan Hastings,et al.  FITTING POPULATION MODELS INCORPORATING PROCESS NOISE AND OBSERVATION ERROR , 2002 .

[28]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[29]  S. Haykin Kalman Filtering and Neural Networks , 2001 .

[30]  J. Geweke,et al.  Bayesian estimation of state-space models using the Metropolis-Hastings algorithm within Gibbs sampling , 2001 .

[31]  Hisashi Tanizaki Estimation of unknown parameters in nonlinear and non-Gaussian state-space models , 2001 .

[32]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[33]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice Using MATLAB , 2001 .

[34]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[35]  Nando de Freitas,et al.  An Introduction to Sequential Monte Carlo Methods , 2001, Sequential Monte Carlo Methods in Practice.

[36]  Meyer,et al.  Bayesian reconstruction of chaotic dynamical systems , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[37]  David S. Stoffer,et al.  Time series analysis and its applications , 2000 .

[38]  Russell B. Millar,et al.  BUGS in Bayesian stock assessments , 1999 .

[39]  N. Stenseth,et al.  Cycles and trends in cod populations. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Russell B. Millar,et al.  Bayesian stock assessment using a state-space implementation of the delay difference model , 1999 .

[41]  Brian Dennis,et al.  COMPLEX POPULATION DYNAMICS IN THE REAL WORLD: MODELING THE INFLUENCE OF TIME-VARYING PARAMETERS AND TIME LAGS , 1998 .

[42]  H.F. Durrant-Whyte,et al.  A new approach for filtering nonlinear systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[43]  D. Ruppert,et al.  Measurement Error in Nonlinear Models , 1995 .

[44]  A. Gelfand,et al.  On Markov Chain Monte Carlo Acceleration , 1994 .

[45]  J. Q. Smith,et al.  1. Bayesian Statistics 4 , 1993 .

[46]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[47]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[48]  G. Kitagawa,et al.  Non-Gaussian State—Space Modeling of Nonstationary Time Series , 1987 .

[49]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  W. Ricker Computation and interpretation of biological statistics of fish populations , 1977 .

[51]  M. Gilpin,et al.  Global models of growth and competition. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[52]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[53]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[54]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.