Wellenfrontaberrationen und subjektive optische Qualität nach wellenfrontgeführter LASIK

ZusammenfassungHintergrundDas Ziel dieser Studie ist die Untersuchung des Einflusses des Wellenfrontfehlers (WFF) auf die subjektive optische Qualität (SOQ) nach LASIK.MethodenBei 41 myopen Augen (21 Patienten) wurde eine komplikationslose LASIK (Median −4,63 dpt) durchgeführt. Prä- und 1 Monat postoperativ wurden die SOQ für photopische und mesopische Lichtbedingungen mit einem Fragebogen erfragt und der WFF vermessen (6 mm). Es wurden 3 verschiedene WFF-Repräsentationen berechnet: 1. die Maßzahl VSOTF (visual Strehl ratio based on the optical transfer function), 2. RMS-Werte der Zernike-Ordnungen 2–5 und 3. Zernike-Koeffizient der Ordnungen 2–5. Die Beeinflussung der postoperativen SOQ durch den WFF wurde mittels linearer Regressionsanalyse ermittelt.ErgebnisseFür photopische Bedingungen war R2 für Modell 1 (VSOTF) 0,24. Für Modell 2 (RMS-Werte) war R2 0,31 und für Modell 3 (Koeffizienten) 0,29, wobei Aberrationen der 2. und der 5. Ordnung die SOQ signifikant beeinflussten. Für mesopische Bedingungen galten ähnliche Ergebnisse.SchlussfolgerungDie SOQ nach komplikationsloser LASIK kann partiell durch den postoperativen WFF erklärt werden.AbstractPurposeTo investigate the clinical impact of the postoperative ocular wavefront error (WFE) on subjective quality of vision (SQV) after LASIK.MethodForty-one myopic eyes of 21 patients underwent uneventful LASIK (median –4.63 D). Preoperatively and 1 month postoperatively, WFE measurements were performed and overall SQV was assessed for two lighting conditions (photopic and mesopic) with a questionnaire. Three different WFE representations were computed for a pupil diameter of 6 mm: (1) the visual quality metric VSOTF (visual Strehl ratio based on the optical transfer function), (2) RMS (root mean square) values of the Zernike orders 2–5, and (3) individual Zernike coefficient for orders 2–5. The impact of the postoperative WFE on SQV was calculated using linear regression analysis.ResultsFor photopic conditions R2 was 0.24 for model 1 (VSOTF), 0.31 for model 2 (RMS values), and 0.29 for model 3 (Zernike coefficients). Second-and fifth-order aberrations had significant influence on SQV. For mesopic conditions, results were similar.ConclusionSubjective quality of vision after wavefront-guided LASIK could be explained partially by the ocular WFE.

[1]  Karla Zadnik,et al.  Patient satisfaction and visual symptoms after laser in situ keratomileusis. , 2003, Ophthalmology.

[2]  David R Williams,et al.  Adaptive optics for vision: the eye's adaptation to point spread function. , 2003, Journal of refractive surgery.

[3]  E. Sarver,et al.  Interaction between aberrations to improve or reduce visual performance , 2003, Journal of cataract and refractive surgery.

[4]  M. Chalita,et al.  Wavefront analysis in post-LASIK eyes and its correlation with visual symptoms, refraction, and topography. , 2003, Ophthalmology.

[5]  T. Kohnen,et al.  Influence of pupil and optical zone diameter on higher‐order aberrations after wavefront‐guided myopic LASIK , 2005, Journal of cataract and refractive surgery.

[6]  Kuang-mon Ashley Tuan Visual experience and patient satisfaction with wavefront‐guided laser in situ keratomileusis , 2006, Journal of cataract and refractive surgery.

[7]  L. Thibos,et al.  Standards for reporting the optical aberrations of eyes. , 2002, Journal of refractive surgery.

[8]  L. Thibos Unresolved issues in the prediction of subjective refraction from wavefront aberration maps. , 2004, Journal of refractive surgery.

[9]  T Kohnen,et al.  [Cyclorotation of the eye in wavefront-guided LASIK using a static eyetracker with iris recognition]. , 2007, Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft.

[10]  D. B. Tran,et al.  Higher order aberrations comparison in fellow eyes following intraLase LASIK with wavelight allegretto and customcornea LADArvision4000 systems. , 2006, Journal of refractive surgery.

[11]  Xu Cheng,et al.  Estimating visual quality from wavefront aberration measurements. , 2003, Journal of refractive surgery.

[12]  Gregory J. McCormick,et al.  Higher-order aberrations in eyes with irregular corneas after laser refractive surgery. , 2004, Ophthalmology.

[13]  Jessica I. Wolfing,et al.  Aberrations induced in wavefront‐guided laser refractive surgery due to shifts between natural and dilated pupil center locations , 2006, Journal of cataract and refractive surgery.

[14]  T. Kohnen,et al.  Cataract and refractive surgery , 2005 .

[15]  Larry N Thibos,et al.  Metrics of Retinal Image Quality Predict Visual Performance in Eyes With 20/17 or Better Visual Acuity , 2006, Optometry and vision science : official publication of the American Academy of Optometry.

[16]  D. Chernyak,et al.  Predicting patients' night vision complaints with wavefront technology. , 2006, American journal of ophthalmology.

[17]  H D Cavanagh,et al.  Patient satisfaction after LASIK for myopia. , 2001, The CLAO journal : official publication of the Contact Lens Association of Ophthalmologists, Inc.

[18]  R. Nuijts,et al.  Minisection: Outcomes Studies Functional outcomes and patient satisfaction after laser in situ keratomileusis for correction of myopia , 2005 .

[19]  Larry N Thibos,et al.  Measuring visual acuity--mesopic or photopic conditions, and high or low contrast letters? , 2004, Journal of refractive surgery.

[20]  Thomas Kohnen,et al.  Wavefront-guided LASIK with the Zyoptix 3.1 system for the correction of myopia and compound myopic astigmatism with 1-year follow-up: clinical outcome and change in higher order aberrations. , 2004, Ophthalmology.

[21]  Tae-im Kim,et al.  Bilateral comparison of wavefront-guided versus conventional laser in situ keratomileusis with Bausch and Lomb Zyoptix. , 2004, Journal of refractive surgery.