Long-Time-Step Integrators for Almost-Adiabatic Quantum Dynamics
暂无分享,去创建一个
[1] C. Zener. Non-Adiabatic Crossing of Energy Levels , 1932 .
[2] Sergio Blanes,et al. Splitting methods for the time-dependent Schrödinger equation , 2000 .
[3] Benedict Leimkuhler,et al. Computational Molecular Dynamics: Challenges, Methods, Ideas , 1999, Computational Molecular Dynamics.
[4] D. Marx. Ab initio molecular dynamics: Theory and Implementation , 2000 .
[5] C. Schütte,et al. Quantum‐classical molecular dynamics as an approximation to full quantum dynamics , 1996 .
[6] Marlis Hochbruck,et al. Exponential Integrators for Quantum-Classical Molecular Dynamics , 1999 .
[7] Arieh Iserles,et al. On the Global Error of Discretization Methods for Highly-Oscillatory Ordinary Differential Equations , 2002 .
[8] Marlis Hochbruck,et al. On Magnus Integrators for Time-Dependent Schrödinger Equations , 2003, SIAM J. Numer. Anal..
[9] Nikos L. Doltsinis,et al. FIRST PRINCIPLES MOLECULAR DYNAMICS INVOLVING EXCITED STATES AND NONADIABATIC TRANSITIONS , 2002 .
[10] Tobias Jahnke,et al. Numerische Verfahren für fast adiabatische Quantendynamik , 2003 .
[11] A. Iserles,et al. On the solution of linear differential equations in Lie groups , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[12] Christof Schütte,et al. Numerical Integrators for Quantum-Classical Molecular Dynamics , 1999, Computational Molecular Dynamics.
[13] J. Tully,et al. Trajectory Surface Hopping Approach to Nonadiabatic Molecular Collisions: The Reaction of H+ with D2 , 1971 .
[14] Johannes Grotendorst,et al. Modern methods and algorithms of quantum chemistry , 2000 .
[15] V. Fock,et al. Beweis des Adiabatensatzes , 1928 .
[16] A. Iserles,et al. Lie-group methods , 2000, Acta Numerica.
[17] W. Magnus. On the exponential solution of differential equations for a linear operator , 1954 .
[18] Nikos L. Doltsinis,et al. Quantum Simulations of complex many-body systems:from theory to algorithms , 2002 .
[19] G. Hagedorn. Proof of the Landau-Zener formula in an adiabatic limit with small eigenvalue gaps , 1991 .
[20] Nonadiabatic Dynamics: Mean-Field and Surface Hopping , 2002 .
[21] Marlis Hochbruck,et al. A Bunch of Time Integrators for Quantum/Classical Molecular Dynamics , 1999, Computational Molecular Dynamics.
[22] Tobias Jahnke,et al. Numerical integrators for quantum dynamics close to the adiabatic limit , 2003, Numerische Mathematik.
[23] Folkmar A. Bornemann,et al. On the Singular Limit of the Quantum-Classical Molecular Dynamics Model , 1999, SIAM J. Appl. Math..