Long-Time-Step Integrators for Almost-Adiabatic Quantum Dynamics

The highly oscillatory solution of a singularly perturbed Schrodinger equation with time-dependent Hamiltonian is computed numerically. The new time-symmetric integrators presented here can be used efficiently with step sizes significantly larger than those required by traditional schemes. This is achieved by a transformation of the problem and an expansion technique for integrals over the oscillating components. The error behavior in the adiabatic case is thoroughly analyzed, and the performance of the methods is illustrated both in an almost-adiabatic setup and in an avoided energy level crossing, where nonadiabatic state transitions occur.

[1]  C. Zener Non-Adiabatic Crossing of Energy Levels , 1932 .

[2]  Sergio Blanes,et al.  Splitting methods for the time-dependent Schrödinger equation , 2000 .

[3]  Benedict Leimkuhler,et al.  Computational Molecular Dynamics: Challenges, Methods, Ideas , 1999, Computational Molecular Dynamics.

[4]  D. Marx Ab initio molecular dynamics: Theory and Implementation , 2000 .

[5]  C. Schütte,et al.  Quantum‐classical molecular dynamics as an approximation to full quantum dynamics , 1996 .

[6]  Marlis Hochbruck,et al.  Exponential Integrators for Quantum-Classical Molecular Dynamics , 1999 .

[7]  Arieh Iserles,et al.  On the Global Error of Discretization Methods for Highly-Oscillatory Ordinary Differential Equations , 2002 .

[8]  Marlis Hochbruck,et al.  On Magnus Integrators for Time-Dependent Schrödinger Equations , 2003, SIAM J. Numer. Anal..

[9]  Nikos L. Doltsinis,et al.  FIRST PRINCIPLES MOLECULAR DYNAMICS INVOLVING EXCITED STATES AND NONADIABATIC TRANSITIONS , 2002 .

[10]  Tobias Jahnke,et al.  Numerische Verfahren für fast adiabatische Quantendynamik , 2003 .

[11]  A. Iserles,et al.  On the solution of linear differential equations in Lie groups , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  Christof Schütte,et al.  Numerical Integrators for Quantum-Classical Molecular Dynamics , 1999, Computational Molecular Dynamics.

[13]  J. Tully,et al.  Trajectory Surface Hopping Approach to Nonadiabatic Molecular Collisions: The Reaction of H+ with D2 , 1971 .

[14]  Johannes Grotendorst,et al.  Modern methods and algorithms of quantum chemistry , 2000 .

[15]  V. Fock,et al.  Beweis des Adiabatensatzes , 1928 .

[16]  A. Iserles,et al.  Lie-group methods , 2000, Acta Numerica.

[17]  W. Magnus On the exponential solution of differential equations for a linear operator , 1954 .

[18]  Nikos L. Doltsinis,et al.  Quantum Simulations of complex many-body systems:from theory to algorithms , 2002 .

[19]  G. Hagedorn Proof of the Landau-Zener formula in an adiabatic limit with small eigenvalue gaps , 1991 .

[20]  Nonadiabatic Dynamics: Mean-Field and Surface Hopping , 2002 .

[21]  Marlis Hochbruck,et al.  A Bunch of Time Integrators for Quantum/Classical Molecular Dynamics , 1999, Computational Molecular Dynamics.

[22]  Tobias Jahnke,et al.  Numerical integrators for quantum dynamics close to the adiabatic limit , 2003, Numerische Mathematik.

[23]  Folkmar A. Bornemann,et al.  On the Singular Limit of the Quantum-Classical Molecular Dynamics Model , 1999, SIAM J. Appl. Math..