Antibiotic Discovery and Development

Antibiotic discovery and development , Antibiotic discovery and development , کتابخانه مرکزی دانشگاه علوم پزشکی تهران

[1]  E. Murphy Nucleotide sequence of ermA, a macrolide-lincosamide-streptogramin B determinant in Staphylococcus aureus , 1985, Journal of bacteriology.

[2]  A. Driessen,et al.  Distribution and Physiology of ABC-Type Transporters Contributing to Multidrug Resistance in Bacteria , 2007, Microbiology and Molecular Biology Reviews.

[3]  S. Levy,et al.  The mar regulon: multiple resistance to antibiotics and other toxic chemicals. , 1999, Trends in microbiology.

[4]  A. Kwon,et al.  Induction of ermAMR from a Clinical Strain of Enterococcus faecalis by 16-Membered-Ring Macrolide Antibiotics , 1998, Journal of bacteriology.

[5]  H. Wexler,et al.  BmeRABC5 is a multidrug efflux system that can confer metronidazole resistance in Bacteroides fragilis. , 2007, Microbial drug resistance.

[6]  H. Nikaido,et al.  Bile salts and fatty acids induce the expression of Escherichia coli AcrAB multidrug efflux pump through their interaction with Rob regulatory protein , 2003, Molecular microbiology.

[7]  Jane W. Marsh,et al.  Outer Membrane Protein Changes and Efflux Pump Expression Together May Confer Resistance to Ertapenem in Enterobacter cloacae , 2006, Antimicrobial Agents and Chemotherapy.

[8]  M. Desai,et al.  Synthesis and antibacterial activity of novel C12 ethyl ketolides. , 2006, Bioorganic & medicinal chemistry.

[9]  H. Wexler,et al.  Bile salts enhance bacterial co-aggregation, bacterial-intestinal epithelial cell adhesion, biofilm formation and antimicrobial resistance of Bacteroides fragilis. , 2007, Microbial pathogenesis.

[10]  Hui-Feng Chen,et al.  Contribution of integrons, and SmeABC and SmeDEF efflux pumps to multidrug resistance in clinical isolates of Stenotrophomonas maltophilia. , 2004, The Journal of antimicrobial chemotherapy.

[11]  Liying Sun,et al.  Differential susceptibility to carbapenems due to the AdeABC efflux pump among nosocomial outbreak isolates of Acinetobacter baumannii in a Chinese hospital. , 2008, Diagnostic microbiology and infectious disease.

[12]  S. Levy,et al.  Ineffectiveness of Topoisomerase Mutations in Mediating Clinically Significant Fluoroquinolone Resistance inEscherichia coli in the Absence of the AcrAB Efflux Pump , 2000, Antimicrobial Agents and Chemotherapy.

[13]  D. Livermore,et al.  Selectivity of ertapenem for Pseudomonas aeruginosa mutants cross-resistant to other carbapenems. , 2005, The Journal of antimicrobial chemotherapy.

[14]  D. Daigle,et al.  Role of the AcrAB-TolC Efflux Pump in Determining Susceptibility of Haemophilus influenzae to the Novel Peptide Deformylase Inhibitor LBM415 , 2005, Antimicrobial Agents and Chemotherapy.

[15]  W. Kern,et al.  Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Escherichia coli. , 2006, The Journal of antimicrobial chemotherapy.

[16]  Qijing Zhang,et al.  Interaction of CmeABC and CmeDEF in conferring antimicrobial resistance and maintaining cell viability in Campylobacter jejuni. , 2006, The Journal of antimicrobial chemotherapy.

[17]  E. Bokma,et al.  Structure of the periplasmic component of a bacterial drug efflux pump. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[18]  D. Dubnau,et al.  Translational attenuation: the regulation of bacterial resistance to the macrolide-lincosamide-streptogramin B antibiotics. , 1984, CRC critical reviews in biochemistry.

[19]  J. Ruiz,et al.  Effect of the efflux pump inhibitor Phe-Arg-beta-naphthylamide on the MIC values of the quinolones, tetracycline and chloramphenicol, in Escherichia coli isolates of different origin. , 2004, The Journal of antimicrobial chemotherapy.

[20]  M. Matsuoka,et al.  Cloning and sequences of inducible and constitutive macrolide resistance genes in Staphylococcus aureus that correspond to an ABC transporter. , 1999, FEMS microbiology letters.

[21]  P. Tulkens,et al.  A combined phenotypic and genotypic method for the detection of Mex efflux pumps in Pseudomonas aeruginosa. , 2007, The Journal of antimicrobial chemotherapy.

[22]  D. Vazquez,et al.  Cooperative and antagonistic interactions of peptidyl-tRNA and antibiotics with bacterial ribosomes. , 1977, European journal of biochemistry.

[23]  F. Ausubel,et al.  Conjugating berberine to a multidrug efflux pump inhibitor creates an effective antimicrobial. , 2006, ACS chemical biology.

[24]  W. Watkins,et al.  Inhibition of efflux pumps as a novel approach to combat drug resistance in bacteria. , 2001, Journal of molecular microbiology and biotechnology.

[25]  S. Levy,et al.  MarA-Like Regulator of Multidrug Resistance in Yersinia pestis , 2006, Antimicrobial Agents and Chemotherapy.

[26]  S. Levy,et al.  Overexpression of marA, soxS, or acrAB produces resistance to triclosan in laboratory and clinical strains of Escherichia coli. , 1998, FEMS microbiology letters.

[27]  N. Masuda,et al.  Contribution of the MexX-MexY-OprM Efflux System to Intrinsic Resistance in Pseudomonas aeruginosa , 2000, Antimicrobial Agents and Chemotherapy.

[28]  David A. D'Argenio,et al.  Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J. Aínsa,et al.  Role of mycobacterial efflux transporters in drug resistance: an unresolved question. , 2006, FEMS microbiology reviews.

[30]  K. Poole,et al.  Multidrug efflux in Pseudomonas aeruginosa: components, mechanisms and clinical significance. , 2001, Current topics in medicinal chemistry.

[31]  A. Kwon,et al.  Translational Attenuation and mRNA Stabilization as Mechanisms of erm(B) Induction by Erythromycin , 2008, Antimicrobial Agents and Chemotherapy.

[32]  N. Høiby,et al.  Occurrence of Hypermutable Pseudomonas aeruginosa in Cystic Fibrosis Patients Is Associated with the Oxidative Stress Caused by Chronic Lung Inflammation , 2005, Antimicrobial Agents and Chemotherapy.

[33]  L. Herman,et al.  Mechanisms of erythromycin resistance of Campylobacter spp. isolated from food, animals and humans. , 2007, International journal of food microbiology.

[34]  J. Vila,et al.  Partial characterisation of the acrAB locus in two Citrobacter freundii clinical isolates. , 2007, International journal of antimicrobial agents.

[35]  D. Dubnau,et al.  Translational attenuation of ermC: A deletion analysis , 1982, Molecular and General Genetics MGG.

[36]  M. N. Huda,et al.  An RND-type multidrug efflux pump SdeXY from Serratia marcescens. , 2003, The Journal of antimicrobial chemotherapy.

[37]  P. Nordmann,et al.  Detection and Prevalence of Active Drug Efflux Mechanism in Various Multidrug-Resistant Klebsiella pneumoniae Strains from Turkey , 2004, Journal of Clinical Microbiology.

[38]  Y. Arakawa,et al.  Plasmid-Mediated qepA Gene among Escherichia coli Clinical Isolates from Japan , 2008, Antimicrobial Agents and Chemotherapy.

[39]  S. Sørensen,et al.  Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. , 2007, The Journal of antimicrobial chemotherapy.

[40]  K. Yokoyama,et al.  Plasmid-Mediated 16S rRNA Methylase in Serratia marcescens Conferring High-Level Resistance to Aminoglycosides , 2004, Antimicrobial Agents and Chemotherapy.

[41]  S. Gibbons,et al.  Plant phenolic compounds as ethidium bromide efflux inhibitors in Mycobacterium smegmatis. , 2008, The Journal of antimicrobial chemotherapy.

[42]  M. Maniati,et al.  Spread of efflux pump-overexpressing, non-metallo-beta-lactamase-producing, meropenem-resistant but ceftazidime-susceptible Pseudomonas aeruginosa in a region with blaVIM endemicity. , 2005, The Journal of antimicrobial chemotherapy.

[43]  J. Ruiz,et al.  Characterization of the molecular mechanisms of quinolone resistance in Yersinia enterocolitica O:3 clinical isolates. , 2004, The Journal of antimicrobial chemotherapy.

[44]  R. Zarivach,et al.  Structural basis for the antibiotic activity of ketolides and azalides. , 2003, Structure.

[45]  Mark Webber,et al.  Phenotypic and Proteomic Characterization of Multiply Antibiotic-Resistant Variants of Salmonella enterica Serovar Typhimurium Selected Following Exposure to Disinfectants , 2007, Applied and Environmental Microbiology.

[46]  David L. Steffen,et al.  Mechanisms Accounting for Fluoroquinolone Resistance in Escherichia coli Clinical Isolates , 2008, Antimicrobial Agents and Chemotherapy.

[47]  E. Cundliffe,et al.  Transcriptional attenuation control of the tylosin‐resistance gene tlrA in Streptomyces fradiae , 1994, Molecular microbiology.

[48]  B. Wretlind,et al.  Mechanisms of quinolone resistance in clinical strains of Pseudomonas aeruginosa. , 1998, Microbial drug resistance.

[49]  Didier Hocquet,et al.  Involvement of the MexXY-OprM Efflux System in Emergence of Cefepime Resistance in Clinical Strains of Pseudomonas aeruginosa , 2006, Antimicrobial Agents and Chemotherapy.

[50]  J. Pagés,et al.  Alkylaminoquinolines inhibit the bacterial antibiotic efflux pump in multidrug-resistant clinical isolates. , 2003, The Biochemical journal.

[51]  W. Shafer,et al.  Functional Cloning and Characterization of the Multidrug Efflux Pumps NorM from Neisseria gonorrhoeae and YdhE from Escherichia coli , 2008, Antimicrobial Agents and Chemotherapy.

[52]  D. Klepacki,et al.  Nascent peptide in the ribosome exit tunnel affects functional properties of the A-site of the peptidyl transferase center. , 2011, Molecular cell.

[53]  B. Wretlind,et al.  Expression of the MexXY efflux pump in amikacin-resistant isolates of Pseudomonas aeruginosa. , 2004, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[54]  A. Begum,et al.  Gene Cloning and Characterization of Four MATE Family Multidrug Efflux Pumps from Vibrio cholerae Non‐O1 , 2005, Microbiology and immunology.

[55]  M. Mulvey,et al.  AcrAB-TolC Directs Efflux-Mediated Multidrug Resistance in Salmonella enterica Serovar Typhimurium DT104 , 2004, Antimicrobial Agents and Chemotherapy.

[56]  D. Hoban,et al.  Ketolides: an emerging treatment for macrolide-resistant respiratory infections, focusing on S. pneumoniae , 2003, Expert opinion on emerging drugs.

[57]  M. Roberts Resistance to macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics , 2004, Molecular biotechnology.

[58]  C. Cagliero,et al.  Involvement of the CmeABC efflux pump in the macrolide resistance of Campylobacter coli. , 2005, Journal of Antimicrobial Chemotherapy.

[59]  P. Bradford,et al.  A Novel MATE Family Efflux Pump Contributes to the Reduced Susceptibility of Laboratory-Derived Staphylococcus aureus Mutants to Tigecycline , 2005, Antimicrobial Agents and Chemotherapy.

[60]  R. Leclercq,et al.  Inducible or constitutive expression of resistance in clinical isolates of streptococci and enterococci cross-resistant to erythromycin and lincomycin. , 1999, The Journal of antimicrobial chemotherapy.

[61]  Peng Ding-hui Carbapenem resistance mechanisms of Pseudomonas aeruginosa , 2010 .

[62]  F. Yoshimura,et al.  Bacteroides fragilis BmeABC efflux systems additively confer intrinsic antimicrobial resistance. , 2006, The Journal of antimicrobial chemotherapy.

[63]  H. Schweizer,et al.  High-level triclosan resistance in Pseudomonas aeruginosa is solely a result of efflux. , 2003, American journal of infection control.

[64]  T. Mah,et al.  Involvement of a Novel Efflux System in Biofilm-Specific Resistance to Antibiotics , 2008, Journal of bacteriology.

[65]  D. Dubnau,et al.  DNA sequence and regulation of ermD, a macrolide-lincosamide-streptogramin B resistance element from Bacillus licheniformis , 1984, Molecular and General Genetics MGG.

[66]  Yun-Jeong Choi,et al.  Heterogeneity of Macrolide-Lincosamide-Streptogramin B Resistance Phenotypes in Enterococci , 2003, Antimicrobial Agents and Chemotherapy.

[67]  M. Perić,et al.  Effects of an Efflux Mechanism and Ribosomal Mutations on Macrolide Susceptibility of Haemophilus influenzae Clinical Isolates , 2003, Antimicrobial Agents and Chemotherapy.

[68]  A. Wong-Beringer,et al.  Use of an Efflux Pump Inhibitor To Determine the Prevalence of Efflux Pump-Mediated Fluoroquinolone Resistance and Multidrug Resistance in Pseudomonas aeruginosa , 2005, Antimicrobial Agents and Chemotherapy.

[69]  Jun Lin,et al.  Effect of an efflux pump inhibitor on the function of the multidrug efflux pump CmeABC and antimicrobial resistance in Campylobacter. , 2006, Foodborne pathogens and disease.

[70]  Inability of L22 ribosomal protein alteration to increase macrolide MICs in the absence of efflux mechanism in Haemophilus influenzae HMC-S. , 2004, The Journal of antimicrobial chemotherapy.

[71]  H. Luís,et al.  Staphylococcus Efflux msr(A) Gene Characterized in Streptococcus, Enterococcus, Corynebacterium, and Pseudomonas Isolates , 2006, Antimicrobial Agents and Chemotherapy.

[72]  S. Halling,et al.  Intrinsic and selected resistance to antibiotics binding the ribosome: analyses of Brucella 23S rrn, L4, L22, EF-Tu1, EF-Tu2, efflux and phylogenetic implications , 2006, BMC Microbiology.

[73]  P. Courvalin,et al.  Transferable Resistance to Aminoglycosides by Methylation of G1405 in 16S rRNA and to Hydrophilic Fluoroquinolones by QepA-Mediated Efflux in Escherichia coli , 2007, Antimicrobial Agents and Chemotherapy.

[74]  K. Poole,et al.  SmeC, an Outer Membrane Multidrug Efflux Protein of Stenotrophomonas maltophilia , 2002, Antimicrobial Agents and Chemotherapy.

[75]  G. Doern Macrolide and ketolide resistance with Streptococcus pneumoniae. , 2006, The Medical clinics of North America.

[76]  F. Schluenzen,et al.  Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria , 2001, Nature.

[77]  K. Poole Efflux pumps as antimicrobial resistance mechanisms , 2007, Annals of medicine.

[78]  Marilyn Roberts,et al.  Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance , 2001, Microbiology and Molecular Biology Reviews.

[79]  A. Marchese,et al.  European Emergence of Ciprofloxacin-Resistant Escherichia coli Clonal Groups O25:H4-ST 131 and O15:K52:H1 Causing Community-Acquired Uncomplicated Cystitis , 2008, Journal of Clinical Microbiology.

[80]  J. Ramos Genomics, life style and molecular architecture , 2004 .

[81]  N. Masuda,et al.  Interplay between chromosomal beta-lactamase and the MexAB-OprM efflux system in intrinsic resistance to beta-lactams in Pseudomonas aeruginosa. , 1999, Antimicrobial Agents and Chemotherapy.

[82]  K. Poole Efflux-mediated antimicrobial resistance. , 2005, The Journal of antimicrobial chemotherapy.

[83]  K. Poole,et al.  MexCD-OprJ Multidrug Efflux System of Pseudomonas aeruginosa: Involvement in Chlorhexidine Resistance and Induction by Membrane-Damaging Agents Dependent upon the AlgU Stress Response Sigma Factor , 2008, Antimicrobial Agents and Chemotherapy.

[84]  M. Ehrenberg,et al.  The Molecular Mechanism of Peptide-mediated Erythromycin Resistance* , 2006, Journal of Biological Chemistry.

[85]  G. Bammert,et al.  Discovery and Characterization of QPT-1, the Progenitor of a New Class of Bacterial Topoisomerase Inhibitors , 2008, Antimicrobial Agents and Chemotherapy.

[86]  D. Young,et al.  Molecular Cloning and Functional Analysis of a Novel Tetracycline Resistance Determinant, tet(V), fromMycobacterium smegmatis , 1998, Antimicrobial Agents and Chemotherapy.

[87]  M. Ehrenberg,et al.  Kinetics of Macrolide Action , 2004, Journal of Biological Chemistry.

[88]  Y. Y. Chan,et al.  BpeAB-OprB, a Multidrug Efflux Pump in Burkholderia pseudomallei , 2004, Antimicrobial Agents and Chemotherapy.

[89]  K. Poole,et al.  Mutations in PA2491 (mexS) Promote MexT-Dependent mexEF-oprN Expression and Multidrug Resistance in a Clinical Strain of Pseudomonas aeruginosa , 2005, Journal of bacteriology.

[90]  M. Niederweis,et al.  Identification of a Novel Multidrug Efflux Pump of Mycobacterium tuberculosis , 2008, Antimicrobial Agents and Chemotherapy.

[91]  S. Horinouchi,et al.  A complex attenuator regulates inducible resistance to macrolides, lincosamides, and streptogramin type B antibiotics in Streptococcus sanguis , 1983, Journal of bacteriology.

[92]  J. Pagés,et al.  New pyridoquinoline derivatives as potential inhibitors of the fluoroquinolone efflux pump in resistant Enterobacter aerogenes strains. , 2001, Journal of medicinal chemistry.

[93]  W. Whittington,et al.  Acquired macrolide resistance genes and the 1 bp deletion in the mtrR promoter in Neisseria gonorrhoeae. , 2003, The Journal of antimicrobial chemotherapy.

[94]  C. Chiu,et al.  Resistance to fluoroquinolones linked to gyrA and par C mutations and overexpression of acr AB efflux pump in Salmonella enterica serotype Choleraesuis. , 2005, Microbial drug resistance.

[95]  T. Tsuchiya,et al.  Molecular Cloning and Characterization of All RND‐Type Efflux Transporters in Vibrio cholerae Non‐O1 , 2007, Microbiology and immunology.

[96]  I. Paulsen,et al.  RamA Confers Multidrug Resistance in Salmonella enterica via Increased Expression of acrB, Which Is Inhibited by Chlorpromazine , 2008, Antimicrobial Agents and Chemotherapy.

[97]  H. Imberechts,et al.  The AcrB multidrug transporter plays a major role in high-level fluoroquinolone resistance in Salmonella enterica serovar typhimurium phage type DT204. , 2002, Microbial drug resistance.

[98]  D. Pillay,et al.  Analysis of the mechanisms of fluoroquinolone resistance in urinary tract pathogens. , 2006, The Journal of antimicrobial chemotherapy.

[99]  J. Vila,et al.  Enhanced active efflux, repression of porin synthesis and development of Mar phenotype by diazepam in two enterobacteria strains. , 2004, Journal of medical microbiology.

[100]  M. Hänninen,et al.  Effect of putative efflux pump inhibitors and inducers on the antimicrobial susceptibility of Campylobacter jejuni and Campylobacter coli. , 2008, Journal of medical microbiology.

[101]  H. Schweizer,et al.  Cross-Resistance between Triclosan and Antibiotics inPseudomonas aeruginosa Is Mediated by Multidrug Efflux Pumps: Exposure of a Susceptible Mutant Strain to Triclosan Selects nfxB Mutants Overexpressing MexCD-OprJ , 2001, Antimicrobial Agents and Chemotherapy.

[102]  S. Yaron,et al.  Quinolone Resistance of Salmonella enterica Serovar Virchow Isolates from Humans and Poultry in Israel: Evidence for Clonal Expansion , 2007, Journal of Clinical Microbiology.

[103]  K. Poole Aminoglycoside Resistance in Pseudomonas aeruginosa , 2005, Antimicrobial Agents and Chemotherapy.

[104]  M. Putman,et al.  Molecular Properties of Bacterial Multidrug Transporters , 2000, Microbiology and Molecular Biology Reviews.

[105]  B. Weisblum,et al.  Erythromycin-induced stabilization of ermA messenger RNA in Staphylococcus aureus and Bacillus subtilis. , 1988, Journal of molecular biology.

[106]  A. Pühler,et al.  Plasmid pB8 is closely related to the prototype IncP-1beta plasmid R751 but transfers poorly to Escherichia coli and carries a new transposon encoding a small multidrug resistance efflux protein. , 2005, Plasmid.

[107]  C. van Delden,et al.  Resistance and Virulence of Pseudomonas aeruginosa Clinical Strains Overproducing the MexCD-OprJ Efflux Pump , 2008, Antimicrobial Agents and Chemotherapy.

[108]  Angela Lee,et al.  Use of a Genetic Approach To Evaluate the Consequences of Inhibition of Efflux Pumps in Pseudomonas aeruginosa , 1999, Antimicrobial Agents and Chemotherapy.

[109]  J. Pagés,et al.  A phenylalanine-arginine beta-naphthylamide sensitive multidrug efflux pump involved in intrinsic and acquired resistance of Campylobacter to macrolides. , 2003, International journal of antimicrobial agents.

[110]  P. Stewart,et al.  A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance , 2003, Nature.

[111]  S. Sørensen,et al.  Nucleotide sequence of pOLA52: a conjugative IncX1 plasmid from Escherichia coli which enables biofilm formation and multidrug efflux. , 2008, Plasmid.

[112]  M. Sinha,et al.  Mechanisms of resistance to carbapenems in meropenem- resistant Acinetobacter isolates from clinical samples. , 2007, Indian journal of medical microbiology.

[113]  B. Bozdoğan,et al.  Effect of Efflux on Telithromycin and Macrolide Susceptibility in Haemophilus influenzae , 2006, Antimicrobial Agents and Chemotherapy.

[114]  H. Schweizer,et al.  Role of the MexXY multidrug efflux pump in moderate aminoglycoside resistance in Pseudomonas aeruginosa isolates from Pseudomonas mastitis , 2008, Microbiology and immunology.

[115]  R. Leclercq,et al.  Unusual inducible cross resistance to macrolides, lincosamides, and streptogramins B by methylase production in clinical isolates of Staphylococcus aureus. , 2001, Microbial drug resistance.

[116]  Q. C. Truong-Bolduc,et al.  NorC, a New Efflux Pump Regulated by MgrA of Staphylococcus aureus , 2006, Antimicrobial Agents and Chemotherapy.

[117]  K. Poole,et al.  Assembly of the MexAB-OprM Multidrug Pump of Pseudomonas aeruginosa: Component Interactions Defined by the Study of Pump Mutant Suppressors , 2007, Journal of bacteriology.

[118]  A. Kwon,et al.  ermK leader peptide: Amino acid sequence critical for induction by erythromycin , 2006, Archives of pharmacal research.

[119]  R. Saito,et al.  Role of type II topoisomerase mutations and AcrAB efflux pump in fluoroquinolone-resistant clinical isolates of Proteus mirabilis. , 2006, The Journal of antimicrobial chemotherapy.

[120]  B. Weisblum Erythromycin resistance by ribosome modification , 1995, Antimicrobial agents and chemotherapy.

[121]  B. Weisblum,et al.  Essential role of endogenously synthesized tylosin for induction of ermSF in Streptomyces fradiae , 1997, Antimicrobial agents and chemotherapy.

[122]  Jian-Hua Liu,et al.  Coprevalence of Plasmid-Mediated Quinolone Resistance Determinants QepA, Qnr, and AAC(6′)-Ib-cr among 16S rRNA Methylase RmtB-Producing Escherichia coli Isolates from Pigs , 2008, Antimicrobial Agents and Chemotherapy.

[123]  H. Hashimoto,et al.  Occurrence of the nfxB type mutation in clinical isolates of Pseudomonas aeruginosa , 1992, Antimicrobial Agents and Chemotherapy.

[124]  C. Kurland,et al.  Elongating ribosomes in vivo are refractory to erythromycin. , 1987, Biochimie.

[125]  S. Levy,et al.  Multiple antibiotic resistance (mar) locus protects Escherichia coli from rapid cell killing by fluoroquinolones , 1996, Antimicrobial agents and chemotherapy.

[126]  Wensi S. Hu,et al.  An OXA-66/OXA-51-Like Carbapenemase and Possibly an Efflux Pump Are Associated with Resistance to Imipenem in Acinetobacter baumannii , 2007, Antimicrobial Agents and Chemotherapy.

[127]  Identification of novel metronidazole-inducible genes in Mycobacterium smegmatis using a customized amplification library. , 2008, FEMS microbiology letters.

[128]  D. Landman,et al.  Interplay of Efflux System, ampC, and oprD Expression in Carbapenem Resistance of Pseudomonas aeruginosa Clinical Isolates , 2006, Antimicrobial Agents and Chemotherapy.

[129]  R. Hancock,et al.  A pleiotropic, posttherapy, enoxacin-resistant mutant of Pseudomonas aeruginosa , 1992, Antimicrobial Agents and Chemotherapy.

[130]  T. Nishino,et al.  nfxC-type quinolone resistance in a clinical isolate of Pseudomonas aeruginosa , 1995, Antimicrobial agents and chemotherapy.

[131]  N. Caroff,et al.  Detection of an IS21 insertion sequence in the mexR gene of Pseudomonas aeruginosa increasing beta-lactam resistance. , 2004, FEMS microbiology letters.

[132]  F. Ikeda,et al.  In Vitro and In Vivo Activities of a New Cephalosporin, FR264205, against Pseudomonas aeruginosa , 2006, Antimicrobial Agents and Chemotherapy.

[133]  H. Schweizer Intrinsic Resistance to Inhibitors of Fatty Acid Biosynthesis in Pseudomonas aeruginosa Is Due to Efflux: Application of a Novel Technique for Generation of Unmarked Chromosomal Mutations for the Study of Efflux Systems , 1998, Antimicrobial Agents and Chemotherapy.

[134]  I. Paulsen,et al.  Substrate specificity and energetics of antiseptic and disinfectant resistance in Staphylococcus aureus. , 1992, FEMS microbiology letters.

[135]  S. Kachlany,et al.  TdeA, a TolC-like protein required for toxin and drug export in Aggregatibacter (Actinobacillus) actinomycetemcomitans. , 2007, Gene.

[136]  M. Webber,et al.  Contribution of Mutation at Amino Acid 45 of AcrR to acrB Expression and Ciprofloxacin Resistance in Clinical and Veterinary Escherichia coli Isolates , 2005, Antimicrobial Agents and Chemotherapy.

[137]  K. Poole,et al.  Mutations in PA3574 (nalD) Lead to Increased MexAB-OprM Expression and Multidrug Resistance in Laboratory and Clinical Isolates of Pseudomonas aeruginosa , 2005, Antimicrobial Agents and Chemotherapy.

[138]  Jian Li,et al.  Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. , 2007, The Journal of antimicrobial chemotherapy.

[139]  D. Bechhofer,et al.  Regulation of the macrolide-lincosamide-streptogramin B resistance gene ermD , 1992, Journal of bacteriology.

[140]  M. Mayford,et al.  Conformational alterations in the ermC transcript in vivo during induction. , 1989, The EMBO journal.

[141]  T. Tsuchiya,et al.  NorM of Vibrio parahaemolyticus Is an Na+-Driven Multidrug Efflux Pump , 2000, Journal of bacteriology.

[142]  H. K. Dannelly,et al.  Inactivation of the putative tetracycline resistance gene HP1165 in Helicobacter pylori led to loss of inducible tetracycline resistance , 2006, Archives of Microbiology.

[143]  F. Rafii,et al.  Detection and characterization of an ABC transporter in Clostridium hathewayi , 2008, Archives of Microbiology.

[144]  J. Pagés,et al.  Intracellular accumulation of linezolid in Escherichia coli, Citrobacter freundii and Enterobacter aerogenes: role of enhanced efflux pump activity and inactivation. , 2007, The Journal of antimicrobial chemotherapy.

[145]  M. Braoudaki,et al.  Low level of cross-resistance between triclosan and antibiotics in Escherichia coli K-12 and E. coli O55 compared to E. coli O157. , 2004, FEMS microbiology letters.

[146]  G. Kaatz,et al.  Multidrug Resistance in Staphylococcus aureus Due to Overexpression of a Novel Multidrug and Toxin Extrusion (MATE) Transport Protein , 2005, Antimicrobial Agents and Chemotherapy.

[147]  M. McGuckin,et al.  Campylobacter jejuni response to human mucin MUC2: modulation of colonization and pathogenicity determinants. , 2008, Journal of medical microbiology.

[148]  D. Spelman,et al.  In vitro activities of ‘new’ and ‘conventional’ antibiotics against multi‐drug resistant Gram negative bacteria from patients in the intensive care unit , 2007, Pathology (Sydney).

[149]  T. Latifi,et al.  Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium , 2006, Molecular microbiology.

[150]  W. Shafer,et al.  Characterization of the MacA-MacB efflux system in Neisseria gonorrhoeae. , 2005, The Journal of antimicrobial chemotherapy.

[151]  P. Bradford,et al.  MarA-mediated overexpression of the AcrAB efflux pump results in decreased susceptibility to tigecycline in Escherichia coli. , 2007, The Journal of antimicrobial chemotherapy.

[152]  F. Hartl,et al.  The dynamic tunnel , 2004, Nature Structural &Molecular Biology.

[153]  H. Noller,et al.  mRNA Helicase Activity of the Ribosome , 2005, Cell.

[154]  B. Weisblum,et al.  Insights into erythromycin action from studies of its activity as inducer of resistance , 1995, Antimicrobial agents and chemotherapy.

[155]  Satoshi Murakami,et al.  Crystal structures of a multidrug transporter reveal a functionally rotating mechanism , 2006, Nature.

[156]  D. Hughes,et al.  Sampling the Antibiotic Resistome , 2006, Science.

[157]  Martha B. Furie,et al.  Deletion of TolC orthologs in Francisella tularensis identifies roles in multidrug resistance and virulence , 2006, Proceedings of the National Academy of Sciences.

[158]  D M Crothers,et al.  Kinetics of an RNA conformational switch. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[159]  L. Peixe,et al.  Dissemination of sul3-Containing Elements Linked to Class 1 Integrons with an Unusual 3′ Conserved Sequence Region among Salmonella Isolates , 2007, Antimicrobial Agents and Chemotherapy.

[160]  Douglas M. Warner,et al.  Clinically relevant mutations that cause derepression of the Neisseria gonorrhoeae MtrC‐MtrD‐MtrE Efflux pump system confer different levels of antimicrobial resistance and in vivo fitness , 2008, Molecular microbiology.

[161]  D. Dubnau,et al.  Conformational alteration of mRNA structure and the posttranscriptional regulation of erythromycin-induced drug resistance. , 1980, Nucleic acids research.

[162]  V. Ricci,et al.  Ciprofloxacin-Resistant Salmonella enterica Serovar Typhimurium Strains Are Difficult To Select in the Absence of AcrB and TolC , 2006, Antimicrobial Agents and Chemotherapy.

[163]  S. Gagné,et al.  Role of the AheABC Efflux Pump in Aeromonas hydrophila Intrinsic Multidrug Resistance , 2008, Antimicrobial Agents and Chemotherapy.

[164]  A. S. Lynch Efflux systems in bacterial pathogens: an opportunity for therapeutic intervention? An industry view. , 2006, Biochemical pharmacology.

[165]  C. Cagliero,et al.  Synergy between Efflux Pump CmeABC and Modifications in Ribosomal Proteins L4 and L22 in Conferring Macrolide Resistance in Campylobacter jejuni and Campylobacter coli , 2006, Antimicrobial Agents and Chemotherapy.

[166]  T. Nakae,et al.  Macrolide Antibiotic-Mediated Downregulation of MexAB-OprM Efflux Pump Expression in Pseudomonas aeruginosa , 2008, Antimicrobial Agents and Chemotherapy.

[167]  L. Piddock,et al.  Effect of triclosan or a phenolic farm disinfectant on the selection of antibiotic-resistant Salmonella enterica. , 2004, The Journal of antimicrobial chemotherapy.

[168]  J. Molnár,et al.  An instrument-free method for the demonstration of efflux pump activity of bacteria. , 2006, In vivo.

[169]  M. Vecchi,et al.  Molecular Characterization of Pneumococci with Efflux-Mediated Erythromycin Resistance and Identification of a Novel mef Gene Subclass, mef(I) , 2005, Antimicrobial Agents and Chemotherapy.

[170]  R. Wallace,,et al.  Intrinsic Macrolide Resistance in Rapidly Growing Mycobacteria , 2006, Antimicrobial Agents and Chemotherapy.

[171]  X. Li,et al.  Fluoroquinolone susceptibilities of efflux-mediated multidrug-resistant Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Burkholderia cepacia. , 2001, The Journal of antimicrobial chemotherapy.

[172]  D. Hocquet,et al.  Bacteriostatic and bactericidal activities of eight fluoroquinolones against MexAB-OprM-overproducing clinical strains of Pseudomonas aeruginosa. , 2005, The Journal of antimicrobial chemotherapy.

[173]  P. Bradford,et al.  AdeABC multidrug efflux pump is associated with decreased susceptibility to tigecycline in Acinetobacter calcoaceticus-Acinetobacter baumannii complex. , 2007, The Journal of antimicrobial chemotherapy.

[174]  M. Maniati,et al.  A highly carbapenem-resistant Pseudomonas aeruginosa isolate with a novel blaVIM-4/blaP1b integron overexpresses two efflux pumps and lacks OprD. , 2007, The Journal of antimicrobial chemotherapy.

[175]  M. Hazbón,et al.  The Mycobacterium tuberculosis iniA gene is essential for activity of an efflux pump that confers drug tolerance to both isoniazid and ethambutol , 2005, Molecular microbiology.

[176]  E. Worobec,et al.  Characterization of the Serratia marcescens SdeCDE multidrug efflux pump studied via gene knockout mutagenesis. , 2008, Canadian journal of microbiology.

[177]  M. Falagas,et al.  Aerosolized colistin as adjunctive treatment of ventilator-associated pneumonia due to multidrug-resistant Gram-negative bacteria: a prospective study. , 2008, Respiratory medicine.

[178]  M. Mayford,et al.  Messenger RNA from Staphylococcus aureus that specifies macrolide-lincosamide-streptogramin resistance. Demonstration of its conformations and of the leader peptide it encodes. , 1985, Journal of molecular biology.

[179]  A. Yamaguchi,et al.  Effects of Efflux Transporter Genes on Susceptibility of Escherichia coli to Tigecycline (GAR-936) , 2004, Antimicrobial Agents and Chemotherapy.

[180]  A. Cloeckaert,et al.  ramR Mutations Involved in Efflux-Mediated Multidrug Resistance in Salmonella enterica Serovar Typhimurium , 2008, Antimicrobial Agents and Chemotherapy.

[181]  J. Rood,et al.  Nomenclature for Macrolide and Macrolide-Lincosamide-Streptogramin B Resistance Determinants , 1999, Antimicrobial Agents and Chemotherapy.

[182]  L. Martínez-Martínez,et al.  Energy-Dependent Accumulation of Fluoroquinolones in Quinolone-Resistant Klebsiella pneumoniaeStrains , 1998, Antimicrobial Agents and Chemotherapy.

[183]  E. Houang,et al.  Novel Resistance-Nodulation-Cell Division Efflux System AdeDE in Acinetobacter Genomic DNA Group 3 , 2004, Antimicrobial Agents and Chemotherapy.

[184]  W. Shafer,et al.  Cationic Antimicrobial Peptide Resistance in Neisseria meningitidis , 2005, Journal of bacteriology.

[185]  J. Aínsa,et al.  Contribution of the Rv2333c efflux pump (the Stp protein) from Mycobacterium tuberculosis to intrinsic antibiotic resistance in Mycobacterium bovis BCG. , 2007, The Journal of antimicrobial chemotherapy.

[186]  F. Gao,et al.  Assessment of efflux pump gene expression in a clinical isolate Mycobacterium tuberculosis by real-time reverse transcription PCR. , 2008, Microbial drug resistance.

[187]  P. Nordmann Plasmid-Mediated Quinolone Resistance , 2008 .

[188]  Jean-Marie Pagès,et al.  Antibiotic efflux pumps in Gram-negative bacteria: the inhibitor response strategy. , 2007, The Journal of antimicrobial chemotherapy.

[189]  L. Piddock,et al.  Expression of the efflux pump genes cmeB, cmeF and the porin gene porA in multiple-antibiotic-resistant Campylobacter jejuni. , 2004, The Journal of antimicrobial chemotherapy.

[190]  O. Sahin,et al.  Role of the CmeABC efflux pump in the emergence of fluoroquinolone-resistant Campylobacter under selection pressure. , 2006, The Journal of antimicrobial chemotherapy.

[191]  K. Poole,et al.  Antibiotic Inducibility of the MexXY Multidrug Efflux System of Pseudomonas aeruginosa: Involvement of the Antibiotic-Inducible PA5471 Gene Product , 2006, Journal of bacteriology.

[192]  S. Pestka,et al.  Induction of Erythromycin Resistance in Staphylococcus aureus by Erythromycin Derivatives , 1976, Antimicrobial Agents and Chemotherapy.

[193]  I. Lasa,et al.  Cloning, Nucleotide Sequencing, and Analysis of the AcrAB-TolC Efflux Pump of Enterobacter cloacae and Determination of Its Involvement in Antibiotic Resistance in a Clinical Isolate , 2007, Antimicrobial Agents and Chemotherapy.

[194]  P. Higgins,et al.  Selection of topoisomerase mutations and overexpression of adeB mRNA transcripts during an outbreak of Acinetobacter baumannii. , 2004, The Journal of antimicrobial chemotherapy.

[195]  P. Higgins,et al.  Multidrug efflux inhibition in Acinetobacter baumannii: comparison between 1-(1-naphthylmethyl)-piperazine and phenyl-arginine-beta-naphthylamide. , 2006, The Journal of antimicrobial chemotherapy.

[196]  S. Falkow,et al.  Bile-salt-mediated induction of antimicrobial and bile resistance in Salmonella typhimurium. , 2004, Microbiology.

[197]  M. Webber,et al.  Triclosan resistance in Salmonella enterica serovar Typhimurium. , 2008, The Journal of antimicrobial chemotherapy.

[198]  W. Whittington,et al.  Acquired Macrolide Resistance Genes in Pathogenic Neisseria spp. Isolated between 1940 and 1987 , 2003, Antimicrobial Agents and Chemotherapy.

[199]  I. Paulsen,et al.  Contribution of Target Gene Mutations and Efflux to Decreased Susceptibility of Salmonella enterica Serovar Typhimurium to Fluoroquinolones and Other Antimicrobials , 2006, Antimicrobial Agents and Chemotherapy.

[200]  R. Benz,et al.  An RND-Type Efflux System in Borrelia burgdorferi Is Involved in Virulence and Resistance to Antimicrobial Compounds , 2008, PLoS pathogens.

[201]  J. Karlowsky,et al.  Macrolide resistance mechanisms among Streptococcus pneumoniae isolated over 6 years of Canadian Respiratory Organism Susceptibility Study (CROSS) (1998 2004). , 2007, The Journal of antimicrobial chemotherapy.

[202]  W. Kern,et al.  Selected Arylpiperazines Are Capable of Reversing Multidrug Resistance in Escherichia coli Overexpressing RND Efflux Pumps , 2005, Antimicrobial Agents and Chemotherapy.

[203]  M. Roberts,et al.  Tetracycline resistance determinants in Mycobacterium and Streptomyces species , 1994, Antimicrobial Agents and Chemotherapy.

[204]  T. Tsuchiya,et al.  Molecular Cloning and Characterization of the HmrM Multidrug Efflux Pump from Haemophilus influenzae Rd , 2003, Microbiology and immunology.

[205]  M. Akova,et al.  Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Enterobacteriaceae other than Escherichia coli. , 2006, The Journal of antimicrobial chemotherapy.

[206]  W. Kern,et al.  Enhanced Expression of the Multidrug Efflux Pumps AcrAB and AcrEF Associated with Insertion Element Transposition in Escherichia coli Mutants Selected with a Fluoroquinolone , 2001, Antimicrobial Agents and Chemotherapy.

[207]  A. Rickard,et al.  Possible implications of biocide accumulation in the environment on the prevalence of bacterial antibiotic resistance , 2002, Journal of Industrial Microbiology and Biotechnology.

[208]  G. Robertson,et al.  A Novel Indole Compound That Inhibits Pseudomonas aeruginosa Growth by Targeting MreB Is a Substrate for MexAB-OprM , 2007, Journal of bacteriology.

[209]  A. Shafiee,et al.  Structural features of new quinolones and relationship to antibacterial activity against Gram-positive bacteria. , 2006, Mini reviews in medicinal chemistry.

[210]  N. Ahmed,et al.  Mycobacterium tuberculosis Isolate with a Distinct Genomic Identity Overexpresses a Tap-Like Efflux Pump , 2004, Infection.

[211]  T. Köhler,et al.  OprK and OprM define two genetically distinct multidrug efflux systems in Pseudomonas aeruginosa , 1995, Antimicrobial agents and chemotherapy.

[212]  H. Nikaido,et al.  Efflux Pump-Mediated Intrinsic Drug Resistance in Mycobacterium smegmatis , 2004, Antimicrobial Agents and Chemotherapy.

[213]  M. Mayford,et al.  ermC leader peptide. Amino acid sequence critical for induction by translational attenuation. , 1989, Journal of molecular biology.

[214]  A. Cloeckaert,et al.  Role of an acrR mutation in multidrug resistance of in vitro-selected fluoroquinolone-resistant mutants of Salmonella enterica serovar Typhimurium. , 2004, FEMS microbiology letters.

[215]  R. Leclercq,et al.  Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. , 2002, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[216]  D. Otto,et al.  Erythromycin, carbomycin, and spiramycin inhibit protein synthesis by stimulating the dissociation of peptidyl-tRNA from ribosomes , 1982, Antimicrobial Agents and Chemotherapy.

[217]  Richard S Larson,et al.  Design and structure of peptide and peptidomimetic antagonists of protein-protein interaction. , 2005, Current protein & peptide science.

[218]  A. Mankin,et al.  The methyltransferase YfgB/RlmN is responsible for modification of adenosine 2503 in 23S rRNA. , 2007, RNA.

[219]  D. Dubnau,et al.  Naturally occurring macrolide-lincosamide-streptogramin B resistance in Bacillus licheniformis , 1981, Journal of bacteriology.

[220]  Diane E. Taylor,et al.  Contribution of the CmeABC Efflux Pump to Macrolide and Tetracycline Resistance in Campylobacter jejuni , 2007, Antimicrobial Agents and Chemotherapy.

[221]  P. Lu,et al.  Characterization of Fluoroquinolone Resistance Mechanisms and Their Correlation with the Degree of Resistance to Clinically Used Fluoroquinolones among Escherichia coli Isolates , 2007, Journal of chemotherapy.

[222]  T. Victor,et al.  Isoniazid-Induced Transient High-Level Resistance in Mycobacterium tuberculosis , 2002, Antimicrobial Agents and Chemotherapy.

[223]  N. Masuda,et al.  Substrate Specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM Efflux Pumps in Pseudomonas aeruginosa , 2000, Antimicrobial Agents and Chemotherapy.

[224]  C. Allen,et al.  Two Host-Induced Ralstonia solanacearum Genes, acrA and dinF, Encode Multidrug Efflux Pumps and Contribute to Bacterial Wilt Virulence , 2007, Applied and Environmental Microbiology.

[225]  W. Shafer,et al.  Missense mutations that alter the DNA-binding domain of the MtrR protein occur frequently in rectal isolates of Neisseria gonorrhoeae that are resistant to faecal lipids. , 1995, Microbiology.

[226]  H. Schweizer Triclosan: a widely used biocide and its link to antibiotics. , 2001, FEMS microbiology letters.

[227]  K. Poole,et al.  MexAB‐OprM hyperexpression in NalC‐type multidrug‐resistant Pseudomonas aeruginosa: identification and characterization of the nalC gene encoding a repressor of PA3720‐PA3719 , 2004, Molecular microbiology.

[228]  D. Livermore Of Pseudomonas, porins, pumps and carbapenems. , 2001, The Journal of antimicrobial chemotherapy.

[229]  C. Andersen,et al.  An aspartate ring at the TolC tunnel entrance determines ion selectivity and presents a target for blocking by large cations , 2002, Molecular microbiology.

[230]  W. Shafer,et al.  Decreased Azithromycin Susceptibility ofNeisseria gonorrhoeae Due to mtrRMutations , 1999, Antimicrobial Agents and Chemotherapy.

[231]  P. Bradford,et al.  Influence of Transcriptional Activator RamA on Expression of Multidrug Efflux Pump AcrAB and Tigecycline Susceptibility in Klebsiella pneumoniae , 2005, Antimicrobial Agents and Chemotherapy.

[232]  M. Ruiz,et al.  Importance of the Efflux Pump Systems in the Resistance of Mycobacterium tuberculosis to Fluoroquinolones and Linezolid , 2007, Chemotherapy.

[233]  Qijing Zhang,et al.  CmeABC Functions as a Multidrug Efflux System in Campylobacter jejuni , 2002, Antimicrobial Agents and Chemotherapy.

[234]  T. Tolker-Nielsen,et al.  Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB‐oprM genes , 2008, Molecular microbiology.

[235]  J. Pagés,et al.  Inhibitors of Antibiotic Efflux in Resistant Enterobacter aerogenes and Klebsiella pneumoniae Strains , 2004, Antimicrobial Agents and Chemotherapy.

[236]  M. Dudley,et al.  The relationship between physicochemical properties, in vitro activity and pharmacokinetic profiles of analogues of diamine-containing efflux pump inhibitors. , 2003, Bioorganic & medicinal chemistry letters.

[237]  M. Hänninen,et al.  Spontaneous mutation frequency and emergence of ciprofloxacin resistance in Campylobacter jejuni and Campylobacter coli. , 2007, The Journal of antimicrobial chemotherapy.

[238]  A. Yamaguchi,et al.  Novel Macrolide-Specific ABC-Type Efflux Transporter inEscherichia coli , 2001, Journal of bacteriology.

[239]  Douglas M. Warner,et al.  Regulation of the MtrC-MtrD-MtrE efflux-pump system modulates the in vivo fitness of Neisseria gonorrhoeae. , 2007, The Journal of infectious diseases.

[240]  M. Ullrich,et al.  Characterization of the RND-Type Multidrug Efflux Pump MexAB-OprM of the Plant Pathogen Pseudomonas syringae , 2008, Applied and Environmental Microbiology.

[241]  L. Piddock,et al.  Commonly used farm disinfectants can select for mutant Salmonella enterica serovar Typhimurium with decreased susceptibility to biocides and antibiotics without compromising virulence. , 2007, The Journal of antimicrobial chemotherapy.

[242]  W. Shafer,et al.  Overexpression of the MtrC-MtrD-MtrE Efflux Pump Due to an mtrR Mutation Is Required for Chromosomally Mediated Penicillin Resistance in Neisseria gonorrhoeae , 2002, Journal of bacteriology.

[243]  L. Piddock,et al.  The Efflux Pump Inhibitor Reserpine Selects Multidrug-Resistant Streptococcus pneumoniae Strains That Overexpress the ABC Transporters PatA and PatB , 2008, Antimicrobial Agents and Chemotherapy.

[244]  N. Groman,et al.  Mapping and cloning of Corynebacterium diphtheriae plasmid pNG2 and characterization of its relatedness to plasmids from skin coryneforms , 1986, Antimicrobial Agents and Chemotherapy.

[245]  S. Douthwaite,et al.  Macrolide Resistance Conferred by Base Substitutions in 23S rRNA , 2001, Antimicrobial Agents and Chemotherapy.

[246]  W. Whittington,et al.  Identification of the Conjugative mefGene in Clinical Acinetobacter junii and Neisseria gonorrhoeae Isolates , 2000, Antimicrobial Agents and Chemotherapy.

[247]  H. Wexler,et al.  Induction of multiple antibiotic resistance in Bacteroides fragilis by benzene and benzene-derived active compounds of commonly used analgesics, antiseptics and cleaning agents. , 2007, The Journal of antimicrobial chemotherapy.

[248]  Colin Hughes,et al.  Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export , 2000, Nature.

[249]  J. Ravel,et al.  Insights into the Environmental Resistance Gene Pool from the Genome Sequence of the Multidrug-Resistant Environmental Isolate Escherichia coli SMS-3-5 , 2008, Journal of bacteriology.

[250]  L. Piddock,et al.  Bacterial efflux pump inhibitors from natural sources. , 2007, The Journal of antimicrobial chemotherapy.

[251]  A. Mankin,et al.  Induction of erm(C) Expression by Noninducing Antibiotics , 2008, Antimicrobial Agents and Chemotherapy.

[252]  J. Kowalak,et al.  Posttranscriptional Modification of the Central Loop of Domain V in Escherichia coli 23 S Ribosomal RNA (*) , 1995, The Journal of Biological Chemistry.

[253]  S. Amyes,et al.  Carbapenem Resistance in Clinical Isolates of Pseudomonas aeruginosa , 2007, Journal of chemotherapy.

[254]  J. Pagés,et al.  Quinoline derivatives as promising inhibitors of antibiotic efflux pump in multidrug resistant Enterobacter aerogenes isolates. , 2006, Current drug targets.

[255]  M. Woodward,et al.  Association between cyclohexane resistance in Salmonella of different serovars and increased resistance to multiple antibiotics, disinfectants and dyes. , 2001, Journal of medical microbiology.

[256]  F. Aarestrup,et al.  Prevalence of quinolone resistance mechanisms and associations to minimum inhibitory concentrations in quinolone-resistant Escherichia coli isolated from humans and swine in Denmark. , 2008, Microbial drug resistance.

[257]  H. H. Xu,et al.  Phenotypic and Molecular Characterization of Acinetobacter baumannii Clinical Isolates from Nosocomial Outbreaks in Los Angeles County, California , 2008, Journal of Clinical Microbiology.

[258]  P. Courvalin,et al.  Expression of the RND-Type Efflux Pump AdeABC in Acinetobacter baumannii Is Regulated by the AdeRS Two-Component System , 2004, Antimicrobial Agents and Chemotherapy.

[259]  Angela Lee,et al.  Identification and Characterization of Inhibitors of Multidrug Resistance Efflux Pumps in Pseudomonas aeruginosa: Novel Agents for Combination Therapy , 2001, Antimicrobial Agents and Chemotherapy.

[260]  P. Higgins,et al.  Fluoroquinolones: structure and target sites. , 2003, Current Drug Targets.

[261]  S. Amyes,et al.  Role of AcrR and RamA in Fluoroquinolone Resistance in Clinical Klebsiella pneumoniae Isolates from Singapore , 2003, Antimicrobial Agents and Chemotherapy.

[262]  J. Verhoef,et al.  Mutations in GyrA, ParC, MexR and NfxB in clinical isolates of Pseudomonas aeruginosa. , 2003, International journal of antimicrobial agents.

[263]  J. Pagés,et al.  Inhibitors of efflux pumps in Gram-negative bacteria. , 2005, Trends in molecular medicine.

[264]  R. Schmid,et al.  DNA microarray for genotyping multidrug-resistant Pseudomonas aeruginosa clinical isolates. , 2007, Diagnostic microbiology and infectious disease.

[265]  B. Weisblum,et al.  Mutant of Staphylococcus aureus with Lincomycin- and Carbomycin-Inducible Resistance to Erythromycin , 1974, Antimicrobial Agents and Chemotherapy.

[266]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[267]  H. Luís,et al.  The mef(A) Gene Predominates among Seven Macrolide Resistance Genes Identified in Gram-Negative Strains Representing 13 Genera, Isolated from Healthy Portuguese Children , 2004, Antimicrobial Agents and Chemotherapy.

[268]  D. Provenzano,et al.  Vibrio cholerae RND Family Efflux Systems Are Required for Antimicrobial Resistance, Optimal Virulence Factor Production, and Colonization of the Infant Mouse Small Intestine , 2008, Infection and Immunity.

[269]  C. Bailly,et al.  Role of the Multidrug Efflux System MexXY in the Emergence of Moderate Resistance to Aminoglycosides among Pseudomonas aeruginosa Isolates from Patients with Cystic Fibrosis , 2004, Antimicrobial Agents and Chemotherapy.

[270]  H. Schweizer,et al.  Method for Regulated Expression of Single-Copy Efflux Pump Genes in a Surrogate Pseudomonas aeruginosa Strain: Identification of the BpeEF-OprC Chloramphenicol and Trimethoprim Efflux Pump of Burkholderia pseudomallei 1026b , 2006, Antimicrobial Agents and Chemotherapy.

[271]  K. Bostian,et al.  Practical applications and feasibility of efflux pump inhibitors in the clinic--a vision for applied use. , 2006, Biochemical pharmacology.

[272]  T. Tsuchiya,et al.  Gene Cloning and Properties of the RND‐Type Multidrug Efflux Pumps MexPQ‐OpmE and MexMN‐OprM from Pseudomonas aeruginosa , 2005, Microbiology and immunology.

[273]  H. Ashour,et al.  Characterization of Pseudomonas aeruginosa isolated from clinical and environmental samples in Minia, Egypt: prevalence, antibiogram and resistance mechanisms. , 2007, The Journal of antimicrobial chemotherapy.

[274]  Yun-juan Chang,et al.  Effect of Macrolide Usage on Emergence of Erythromycin-Resistant Campylobacter Isolates in Chickens , 2007, Antimicrobial Agents and Chemotherapy.

[275]  Saman Halgamuge,et al.  Analysis of SD sequences in completed microbial genomes: non-SD-led genes are as common as SD-led genes. , 2006, Gene.

[276]  C. Hotz,et al.  Importance of the adaptor (membrane fusion) protein hairpin domain for the functionality of multidrug efflux pumps. , 2006, Biochemistry.

[277]  J. Pagés,et al.  The AcrAB-TolC Efflux Pump Contributes to Multidrug Resistance in the Nosocomial Pathogen Enterobacter aerogenes , 2002, Antimicrobial Agents and Chemotherapy.

[278]  D. Sherman,et al.  Characterization of a Pseudomonas aeruginosa Efflux Pump Contributing to Aminoglycoside Impermeability , 1999, Antimicrobial Agents and Chemotherapy.

[279]  Amit Ghosh,et al.  Mechanism of Drug Resistance in Clonally Related Clinical Isolates of Vibrio fluvialis Isolated in Kolkata, India , 2006, Antimicrobial Agents and Chemotherapy.

[280]  Alterations of porin, pumps, and penicillin-binding proteins in carbapenem resistant clinical isolates of Pseudomonas aeruginosa. , 2008, Microbial drug resistance.

[281]  S. Sørensen,et al.  Plasmid-Encoded Multidrug Efflux Pump Conferring Resistance to Olaquindox in Escherichia coli , 2004, Antimicrobial Agents and Chemotherapy.

[282]  K. Poole,et al.  SmeDEF Multidrug Efflux Pump Contributes to Intrinsic Multidrug Resistance in Stenotrophomonas maltophilia , 2001, Antimicrobial Agents and Chemotherapy.

[283]  N. Masuda,et al.  Potent In Vitro Activity of Tomopenem (CS-023) against Methicillin-Resistant Staphylococcus aureus and Pseudomonas aeruginosa , 2008, Antimicrobial Agents and Chemotherapy.

[284]  Matthew E Falagas,et al.  Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. , 2005, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[285]  Angela Lee,et al.  MexXY-OprM Efflux Pump Is Necessary for Adaptive Resistance of Pseudomonas aeruginosa to Aminoglycosides , 2003, Antimicrobial Agents and Chemotherapy.

[286]  Jun Lin,et al.  Effect of efflux pump inhibitors on bile resistance and in vivo colonization of Campylobacter jejuni. , 2006, The Journal of antimicrobial chemotherapy.

[287]  S. Douthwaite,et al.  Resistance to the macrolide antibiotic tylosin is conferred by single methylations at 23S rRNA nucleotides G748 and A2058 acting in synergy , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[288]  D. Hocquet,et al.  Clinical Strains of Pseudomonas aeruginosa Overproducing MexAB-OprM and MexXY Efflux Pumps Simultaneously , 2004, Antimicrobial Agents and Chemotherapy.

[289]  P. Bradford,et al.  AcrAB Multidrug Efflux Pump Is Associated with Reduced Levels of Susceptibility to Tigecycline (GAR-936) in Proteus mirabilis , 2003, Antimicrobial Agents and Chemotherapy.

[290]  H. Wexler,et al.  Clinical significance of overexpression of multiple RND-family efflux pumps in Bacteroides fragilis isolates. , 2006, The Journal of antimicrobial chemotherapy.

[291]  B. Weisblum,et al.  Erythromycin-Inducible Resistance in Staphylococcus aureus: Requirements for Induction , 1971, Journal of bacteriology.

[292]  A. de Kruif,et al.  tet(L)-mediated tetracycline resistance in bovine Mannheimia and Pasteurella isolates. , 2005, The Journal of antimicrobial chemotherapy.

[293]  T. Tsuchiya,et al.  Functional gene cloning and characterization of the SsmE multidrug efflux pump from Serratia marcescens. , 2008, Biological & pharmaceutical bulletin.

[294]  I. Wiegand,et al.  Resistance Mechanisms of Multiresistant Pseudomonas aeruginosa Strains from Germany and Correlation with Hypermutation , 2007, Antimicrobial Agents and Chemotherapy.

[295]  W. Kern,et al.  Altered spectrum of multidrug resistance associated with a single point mutation in the Escherichia coli RND-type MDR efflux pump YhiV (MdtF). , 2007, The Journal of antimicrobial chemotherapy.

[296]  P. Plésiat,et al.  Mechanisms of beta-lactam resistance in Pseudomonas aeruginosa: prevalence of OprM-overproducing strains in a French multicentre study (1997). , 2002, The Journal of antimicrobial chemotherapy.

[297]  S. Mitsuhashi,et al.  Mechanisms of high-level resistance to quinolones in urinary tract isolates of Pseudomonas aeruginosa , 1994, Antimicrobial Agents and Chemotherapy.

[298]  P. Bradford,et al.  AcrAB Efflux Pump Plays a Role in Decreased Susceptibility to Tigecycline in Morganella morganii , 2005, Antimicrobial Agents and Chemotherapy.

[299]  C. Gualerzi,et al.  Review on Bacterial Stress Topics , 2007, Annals of the New York Academy of Sciences.

[300]  B. Weisblum,et al.  Translational attenuation control of ermSF, an inducible resistance determinant encoding rRNA N-methyltransferase from Streptomyces fradiae , 1988, Journal of bacteriology.

[301]  W. Rutala,et al.  Use of Germicides in the Home and the Healthcare Setting Is There a Relationship Between Germicide Use and Antibiotic Resistance? , 2006, Infection Control & Hospital Epidemiology.

[302]  Effect and Mechanism of Andrographolide on the Recovery of Pseudomonas aeruginosa Susceptibility to Several Antibiotics , 2008, The Journal of international medical research.

[303]  J. Pagés,et al.  The AcrAB-TolC Pump Is Involved in Macrolide Resistance but Not in Telithromycin Efflux in Enterobacter aerogenes and Escherichia coli , 2004, Antimicrobial Agents and Chemotherapy.

[304]  F. Mégraud,et al.  Mechanisms of fluoroquinolone and macrolide resistance in Campylobacter spp. , 2006, Microbes and infection.

[305]  Q. C. Truong-Bolduc,et al.  DX-619, a Novel Des-Fluoro(6) Quinolone Manifesting Low Frequency of Selection of Resistant Staphylococcus aureus Mutants: Quinolone Resistance beyond Modification of Type II Topoisomerases , 2005, Antimicrobial Agents and Chemotherapy.

[306]  S. Magnet,et al.  AdeIJK, a Resistance-Nodulation-Cell Division Pump Effluxing Multiple Antibiotics in Acinetobacter baumannii , 2008, Antimicrobial Agents and Chemotherapy.

[307]  H. Zgurskaya,et al.  Fitting Periplasmic Membrane Fusion Proteins to Inner Membrane Transporters: Mutations That Enable Escherichia coli AcrA To Function with Pseudomonas aeruginosa MexB , 2007, Journal of bacteriology.

[308]  H. Nikaido,et al.  Contributions of MexAB-OprM and an EmrE Homolog to Intrinsic Resistance of Pseudomonas aeruginosa to Aminoglycosides and Dyes , 2003, Antimicrobial Agents and Chemotherapy.

[309]  Hilde Kruse,et al.  Triclosan and antimicrobial resistance in bacteria: an overview. , 2006, Microbial drug resistance.

[310]  D. Landman,et al.  Correlation of Antimicrobial Resistance with β-Lactamases, the OmpA-Like Porin, and Efflux Pumps in Clinical Isolates of Acinetobacter baumannii Endemic to New York City , 2008, Antimicrobial Agents and Chemotherapy.

[311]  E. Bokma,et al.  Interactions underlying assembly of the Escherichia coli AcrAB–TolC multidrug efflux system , 2004, Molecular microbiology.

[312]  Anil Kumar Singh,et al.  Molecular characterization of multidrug-resistant Shigella species isolated from epidemic and endemic cases of shigellosis in India. , 2008, Journal of medical microbiology.

[313]  J. Chen,et al.  Molecular Cloning and Characterization of an ABC Multidrug Efflux Pump, VcaM, in Non-O1 Vibrio cholerae , 2003, Antimicrobial Agents and Chemotherapy.

[314]  R. Leclercq,et al.  Resistance to Macrolides and Related Antibiotics in Streptococcus pneumoniae , 2002, Antimicrobial Agents and Chemotherapy.

[315]  L. Bastide,et al.  A multiwell assay to isolate compounds inhibiting the assembly of the prokaryotic RNA polymerase. , 2004, Assay and drug development technologies.

[316]  S. Murakami,et al.  Multidrug efflux transporter, AcrB--the pumping mechanism. , 2008, Current opinion in structural biology.

[317]  M. Page,et al.  Involvement of the Putative ATP-Dependent Efflux Proteins PatA and PatB in Fluoroquinolone Resistance of a Multidrug-Resistant Mutant of Streptococcus pneumoniae , 2006, Antimicrobial Agents and Chemotherapy.

[318]  S. Tsiodras,et al.  Evolution of macrolide resistance in Streptococcus pneumoniae clinical isolates in the prevaccine era. , 2008, Diagnostic microbiology and infectious disease.

[319]  D. Clewell,et al.  Complete nucleotide sequence of macrolide-lincosamide-streptogramin B-resistance transposon Tn917 in Streptococcus faecalis , 1985, Journal of bacteriology.

[320]  K. Diederichs,et al.  The AcrB efflux pump: conformational cycling and peristalsis lead to multidrug resistance. , 2008, Current drug targets.

[321]  A. Holck,et al.  Cross‐resistance to antibiotics of Escherichia coli adapted to benzalkonium chloride or exposed to stress‐inducers , 2004, Journal of applied microbiology.

[322]  F. Sharom ABC multidrug transporters: structure, function and role in chemoresistance. , 2008, Pharmacogenomics.

[323]  Jun Lin,et al.  Bile Salts Modulate Expression of the CmeABC Multidrug Efflux Pump in Campylobacter jejuni , 2005, Journal of bacteriology.

[324]  J. Mekalanos,et al.  Characterization of the Vibrio cholerae vexAB and vexCD efflux systems , 2006, Archives of Microbiology.

[325]  E. Bokma,et al.  A periplasmic coiled-coil interface underlying TolC recruitment and the assembly of bacterial drug efflux pumps , 2007, Proceedings of the National Academy of Sciences.

[326]  L. Piddock,et al.  The AcrAB–TolC efflux system of Salmonella enterica serovar Typhimurium plays a role in pathogenesis , 2006, Cellular microbiology.

[327]  T. Tsukihara,et al.  Crystal Structure of the Membrane Fusion Protein, MexA, of the Multidrug Transporter in Pseudomonas aeruginosa* , 2004, Journal of Biological Chemistry.

[328]  Ying Ying Chan,et al.  Synergistic Interaction between Phenothiazines and Antimicrobial Agents against Burkholderia pseudomallei , 2006, Antimicrobial Agents and Chemotherapy.

[329]  T. Tsuchiya,et al.  VmeAB, an RND-type multidrug efflux transporter in Vibrio parahaemolyticus. , 2007, Microbiology.

[330]  J. Pagés,et al.  Inhibitors of bacterial efflux pumps as adjuvants in antibiotic treatments and diagnostic tools for detection of resistance by efflux. , 2006, Recent patents on anti-infective drug discovery.

[331]  T. Steitz,et al.  The structural basis of ribosome activity in peptide bond synthesis. , 2000, Science.

[332]  K. Poole,et al.  Induction of the MexXY Efflux Pump in Pseudomonas aeruginosa Is Dependent on Drug-Ribosome Interaction , 2005, Journal of bacteriology.

[333]  A. Yamaguchi,et al.  AcrAB Multidrug Efflux Pump Regulation in Salmonella enterica serovar Typhimurium by RamA in Response to Environmental Signals , 2008, Journal of Biological Chemistry.

[334]  L. Piddock Multidrug-resistance efflux pumps ? not just for resistance , 2006, Nature Reviews Microbiology.

[335]  M. Dudley,et al.  Conformationally-restricted analogues of efflux pump inhibitors that potentiate the activity of levofloxacin in Pseudomonas aeruginosa. , 2003, Bioorganic & medicinal chemistry letters.

[336]  D. Hocquet,et al.  Antibiotic susceptibility and mechanisms of beta-lactam resistance among clinical strains of Pseudomonas aeruginosa: first report in Algeria. , 2008, Medecine et maladies infectieuses.

[337]  D. Ceccarelli,et al.  New Cluster of Plasmid-Located Class 1 Integrons in Vibrio cholerae O1 and a dfrA15 Cassette-Containing Integron in Vibrio parahaemolyticus Isolated in Angola , 2006, Antimicrobial Agents and Chemotherapy.

[338]  W. Shafer,et al.  Decreased susceptibility to azithromycin and erythromycin mediated by a novel mtr(R) promoter mutation in Neisseria gonorrhoeae. , 2001, The Journal of antimicrobial chemotherapy.

[339]  K. Poole,et al.  Interaction of the MexA and MexB Components of the MexAB-OprM Multidrug Efflux System of Pseudomonas aeruginosa: Identification of MexA Extragenic Suppressors of a T578I Mutation in MexB , 2005, Antimicrobial Agents and Chemotherapy.

[340]  K. Kimura,et al.  New Plasmid-Mediated Fluoroquinolone Efflux Pump, QepA, Found in an Escherichia coli Clinical Isolate , 2007, Antimicrobial Agents and Chemotherapy.

[341]  P. McDermott,et al.  Role of Efflux Pumps and Topoisomerase Mutations in Fluoroquinolone Resistance in Campylobacter jejuni and Campylobacter coli , 2005, Antimicrobial Agents and Chemotherapy.

[342]  D. Paterson,et al.  Tigecycline Efflux as a Mechanism for Nonsusceptibility in Acinetobacter baumannii , 2007, Antimicrobial Agents and Chemotherapy.

[343]  J. Menninger Functional consequences of binding macrolides to ribosomes. , 1985, The Journal of antimicrobial chemotherapy.

[344]  L. Piddock,et al.  Prevalence of multiple antibiotic resistance in 443 Campylobacter spp. isolated from humans and animals. , 2003, The Journal of antimicrobial chemotherapy.

[345]  T. Tsuchiya,et al.  Gene cloning and characterization of KdeA, a multidrug efflux pump from Klebsiella pneumoniae. , 2007, Biological & pharmaceutical bulletin.

[346]  A. Goesmann,et al.  The 79,370-bp conjugative plasmid pB4 consists of an IncP-1β backbone loaded with a chromate resistance transposon, the strA-strB streptomycin resistance gene pair, the oxacillinase gene blaNPS-1, and a tripartite antibiotic efflux system of the resistance-nodulation-division family , 2003, Molecular Genetics and Genomics.

[347]  A. Oliver,et al.  Molecular Epidemiology and Mechanisms of Carbapenem Resistance in Pseudomonas aeruginosa Isolates from Spanish Hospitals , 2007, Antimicrobial Agents and Chemotherapy.

[348]  T. Köhler,et al.  Characterization of MexT, the Regulator of the MexE-MexF-OprN Multidrug Efflux System of Pseudomonas aeruginosa , 1999, Journal of bacteriology.

[349]  A. Alonso,et al.  Cloning and Characterization of SmeDEF, a Novel Multidrug Efflux Pump from Stenotrophomonas maltophilia , 2000, Antimicrobial Agents and Chemotherapy.

[350]  J. Vázquez,et al.  Fluoroquinolone resistance in Neisseria meningitidis in Spain. , 2007, The Journal of antimicrobial chemotherapy.

[351]  J. Vincent,et al.  Molecular Characterization of an Epidemic Clone of Panantibiotic-Resistant Pseudomonas aeruginosa , 2005, Journal of Clinical Microbiology.

[352]  J. Navas,et al.  Distribution of Tetracycline Resistance Genes in Actinobacillus pleuropneumoniae Isolates from Spain , 2006, Antimicrobial Agents and Chemotherapy.

[353]  G. Kaatz,et al.  Phenylpiperidine selective serotonin reuptake inhibitors interfere with multidrug efflux pump activity in Staphylococcus aureus. , 2003, International journal of antimicrobial agents.

[354]  P. Butaye,et al.  Mobile genes coding for efflux-mediated antimicrobial resistance in Gram-positive and Gram-negative bacteria. , 2003, International journal of antimicrobial agents.

[355]  G. Kaatz,et al.  Identification and characterization of a novel efflux-related multidrug resistance phenotype in Staphylococcus aureus. , 2002, The Journal of antimicrobial chemotherapy.

[356]  I. Paulsen,et al.  Proton-dependent multidrug efflux systems , 1996, Microbiological reviews.

[357]  K. Poole,et al.  Assembly of the MexAB-OprM Multidrug Efflux System of Pseudomonas aeruginosa: Identification and Characterization of Mutations in mexA Compromising MexA Multimerization and Interaction with MexB , 2004, Journal of bacteriology.

[358]  E C Cole,et al.  Investigation of antibiotic and antibacterial agent cross‐resistance in target bacteria from homes of antibacterial product users and nonusers , 2003, Journal of applied microbiology.

[359]  G. Riccardi,et al.  mmpL7 Gene of Mycobacterium tuberculosis Is Responsible for Isoniazid Efflux in Mycobacterium smegmatis , 2005, Antimicrobial Agents and Chemotherapy.

[360]  P. Bradford,et al.  RamA, a transcriptional regulator, and AcrAB, an RND-type efflux pump, are associated with decreased susceptibility to tigecycline in Enterobacter cloacae. , 2007, Microbial drug resistance.

[361]  M. Roberts,et al.  Update on macrolide-lincosamide-streptogramin, ketolide, and oxazolidinone resistance genes. , 2008, FEMS microbiology letters.

[362]  E. Cundliffe,et al.  Cloning of tlrD, a fourth resistance gene, from the tylosin producer, Streptomyces fradiae. , 1991, Gene.

[363]  A. Yamaguchi,et al.  Analysis of a Complete Library of Putative Drug Transporter Genes in Escherichia coli , 2001, Journal of bacteriology.

[364]  D. Dubnau,et al.  Cloning and analysis of ermG, a new macrolide-lincosamide-streptogramin B resistance element from Bacillus sphaericus , 1987, Journal of bacteriology.

[365]  M. Webber,et al.  Prolonged treatment of Salmonella enterica serovar Typhimurium with commercial disinfectants selects for multiple antibiotic resistance, increased efflux and reduced invasiveness. , 2007, The Journal of antimicrobial chemotherapy.

[366]  M. Ehrenberg,et al.  Cis-acting resistance peptides reveal dual ribosome inhibitory action of the macrolide josamycin. , 2009, Biochimie.

[367]  G. Cornaglia,et al.  AcrAB Efflux System: Expression and Contribution to Fluoroquinolone Resistance in Klebsiella spp , 2002, Antimicrobial Agents and Chemotherapy.

[368]  Mark A. Miller,et al.  The AcrAB RND efflux system from the live vaccine strain of Francisella tularensis is a multiple drug efflux system that is required for virulence in mice. , 2008, FEMS microbiology letters.

[369]  D. Livermore,et al.  Doripenem versus Pseudomonas aeruginosa In Vitro: Activity against Characterized Isolates, Mutants, and Transconjugants and Resistance Selection Potential , 2004, Antimicrobial Agents and Chemotherapy.

[370]  D. Dubnau,et al.  An in vitro study of the translational attenuation model of ermC regulation. , 1987, The Journal of biological chemistry.

[371]  Y. Li,et al.  A new member of the tripartite multidrug efflux pumps, MexVW-OprM, in Pseudomonas aeruginosa. , 2003, The Journal of antimicrobial chemotherapy.

[372]  Lori A. S. Snyder,et al.  A Gonococcal Efflux Pump System Enhances Bacterial Survival in a Female Mouse Model of Genital Tract Infection , 2003, Infection and Immunity.

[373]  J. Martínez,et al.  The Biocide Triclosan Selects Stenotrophomonas maltophilia Mutants That Overproduce the SmeDEF Multidrug Efflux Pump , 2005, Antimicrobial Agents and Chemotherapy.

[374]  Ayush Kumar,et al.  Cloning, Sequencing, and Characterization of the SdeAB Multidrug Efflux Pump of Serratia marcescens , 2005, Antimicrobial Agents and Chemotherapy.

[375]  M. Jacobs,et al.  In Vitro Activity of the New Quinolone WCK 771 against Staphylococci , 2004, Antimicrobial Agents and Chemotherapy.

[376]  M. Maurel,et al.  Regulation of the expression of the CmeABC efflux pump in Campylobacter jejuni: identification of a point mutation abolishing the binding of the CmeR repressor in an in vitro-selected multidrug-resistant mutant. , 2007, FEMS microbiology letters.

[377]  M. Kalin,et al.  Cefuroxime non-susceptibility in multidrug-resistant Klebsiella pneumoniae overexpressing ramA and acrA and expressing ompK35 at reduced levels. , 2008, The Journal of antimicrobial chemotherapy.

[378]  R. Wallace,,et al.  A Novel Gene, erm(41), Confers Inducible Macrolide Resistance to Clinical Isolates of Mycobacterium abscessus but Is Absent from Mycobacterium chelonae , 2008, Antimicrobial Agents and Chemotherapy.

[379]  M. C. Moken,et al.  Selection of multiple-antibiotic-resistant (mar) mutants of Escherichia coli by using the disinfectant pine oil: roles of the mar and acrAB loci , 1997, Antimicrobial agents and chemotherapy.

[380]  Gregor Blaha,et al.  Structures of MLSBK Antibiotics Bound to Mutated Large Ribosomal Subunits Provide a Structural Explanation for Resistance , 2005, Cell.

[381]  G. Kaatz,et al.  Synthesis and evaluation of fluoroquinolone derivatives as substrate-based inhibitors of bacterial efflux pumps. , 2008, European journal of medicinal chemistry.

[382]  Masato Yoshimura,et al.  Crystal Structure of the Drug Discharge Outer Membrane Protein, OprM, of Pseudomonas aeruginosa , 2004, Journal of Biological Chemistry.

[383]  W. Ludwig,et al.  Plasmid-borne macrolide resistance in Micrococcus luteus. , 2002, Microbiology.

[384]  B. Weisblum,et al.  Transcriptional attenuation control of ermK, a macrolide-lincosamide-streptogramin B resistance determinant from Bacillus licheniformis , 1991, Journal of bacteriology.

[385]  T. Tsuchiya,et al.  Properties and expression of a multidrug efflux pump AcrAB-KocC from Klebsiella pneumoniae. , 2008, Biological & pharmaceutical bulletin.

[386]  T. Gootz,et al.  Genetic and Molecular Characterization of β-Lactamase-Negative Ampicillin-Resistant Haemophilus influenzae with Unusually High Resistance to Ampicillin , 2004, Antimicrobial Agents and Chemotherapy.

[387]  K. Marotti,et al.  3-Arylpiperidines as potentiators of existing antibacterial agents. , 2001, Bioorganic & medicinal chemistry letters.

[388]  D. Paterson,et al.  Acinetobacter baumannii bloodstream infection while receiving tigecycline: a cautionary report. , 2006, The Journal of antimicrobial chemotherapy.

[389]  S. Schwarz,et al.  Molecular mechanisms of decreased susceptibility to fluoroquinolones in avian Salmonella serovars and their mutants selected during the determination of mutant prevention concentrations. , 2007, The Journal of antimicrobial chemotherapy.

[390]  J. Martínez,et al.  The efflux pump inhibitor Phe-Arg-beta-naphthylamide does not abolish the activity of the Stenotrophomonas maltophilia SmeDEF multidrug efflux pump. , 2003, The Journal of antimicrobial chemotherapy.

[391]  S. Schwarz,et al.  Molecular basis of resistance to macrolides and lincosamides among staphylococci and streptococci from various animal sources collected in the resistance monitoring program BfT-GermVet. , 2007, International journal of antimicrobial agents.

[392]  R. Hancock,et al.  Negative Regulation of the Pseudomonas aeruginosa Outer Membrane Porin OprD Selective for Imipenem and Basic Amino Acids , 1999, Antimicrobial Agents and Chemotherapy.

[393]  A. Alonso,et al.  Emergence of multidrug-resistant mutants is increased under antibiotic selective pressure in Pseudomonas aeruginosa. , 1999, Microbiology.

[394]  R. Cantón,et al.  Regional trends in beta-lactam, macrolide, fluoroquinolone and telithromycin resistance among Streptococcus pneumoniae isolates 2001-2004. , 2007, The Journal of infection.

[395]  G. Drusano,et al.  Isoniazid's bactericidal activity ceases because of the emergence of resistance, not depletion of Mycobacterium tuberculosis in the log phase of growth. , 2007, The Journal of infectious diseases.

[396]  K. Poole Bacterial Multidrug Efflux Pumps Serve Other Functions , 2008 .

[397]  J. Pagés,et al.  Chloroquinolines block antibiotic efflux pumps in antibiotic-resistant Enterobacter aerogenes isolates. , 2006, International journal of antimicrobial agents.

[398]  S. Schwarz,et al.  Molecular basis of bacterial resistance to chloramphenicol and florfenicol. , 2004, FEMS microbiology reviews.

[399]  K. Poole,et al.  Can efflux inhibitors really counter resistance , 2006 .

[400]  K. Poole,et al.  Contribution of the MexXY Multidrug Transporter to Aminoglycoside Resistance in Pseudomonas aeruginosa Clinical Isolates , 2003, Antimicrobial Agents and Chemotherapy.

[401]  J. Chen,et al.  Molecular cloning and characterization of a multidrug efflux pump, SmfY, from Serratia marcescens. , 2007, Biological & pharmaceutical bulletin.

[402]  C. Elkins,et al.  Chimeric Analysis of AcrA Function Reveals the Importance of Its C-Terminal Domain in Its Interaction with the AcrB Multidrug Efflux Pump , 2003, Journal of bacteriology.

[403]  Isabella Moll,et al.  Translation initiation with 70S ribosomes: an alternative pathway for leaderless mRNAs. , 2004, Nucleic acids research.

[404]  K. Diederichs,et al.  Structural Asymmetry of AcrB Trimer Suggests a Peristaltic Pump Mechanism , 2006, Science.

[405]  M. Roberts Distribution of macrolide, lincosamide, streptogramin, ketolide and oxazolidinone (MLSKO) resistance genes in Gram-negative bacteria. , 2004, Current drug targets. Infectious disorders.

[406]  Claude Carbón,et al.  Differential Selection of Multidrug Efflux Mutants by Trovafloxacin and Ciprofloxacin in an Experimental Model ofPseudomonas aeruginosa Acute Pneumonia in Rats , 2001, Antimicrobial Agents and Chemotherapy.

[407]  M. Roberts Update on acquired tetracycline resistance genes. , 2005, FEMS microbiology letters.

[408]  K. Köhrer,et al.  Structural Alterations in the Translational Attenuator of Constitutively Expressed erm(A) Genes inStaphylococcus aureus , 2001, Antimicrobial Agents and Chemotherapy.

[409]  T. Tsuchiya,et al.  SmdAB, a Heterodimeric ABC-Type Multidrug Efflux Pump, in Serratia marcescens , 2007, Journal of bacteriology.

[410]  K. Reich,et al.  Induction of ribosome methylation in MLS-resistant Streptococcus pneumoniae by macrolides and ketolides. , 1999, Microbial drug resistance.

[411]  E. Houang,et al.  Presence of active efflux systems AdeABC, AdeDE and AdeXYZ in different Acinetobacter genomic DNA groups. , 2006, Journal of medical microbiology.

[412]  K. Poole Uninhibited antibiotic target discovery via chemical genetics , 2004, Nature Biotechnology.

[413]  A. Mankin,et al.  Molecular mechanism of drug-dependent ribosome stalling. , 2008, Molecular cell.

[414]  T. Tsuchiya,et al.  Induction of mexCD-oprJ operon for a multidrug efflux pump by disinfectants in wild-type Pseudomonas aeruginosa PAO1. , 2003, The Journal of antimicrobial chemotherapy.

[415]  G. Manina,et al.  Efflux pump genes of the resistance-nodulation-division family in Burkholderia cenocepacia genome , 2006, BMC Microbiology.

[416]  C. Arias,et al.  Characterization of macrolide resistance in Gram-positive cocci from Colombian hospitals: a countrywide surveillance. , 2007, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases.

[417]  H. Ramu,et al.  Programmed drug‐dependent ribosome stalling , 2009, Molecular microbiology.

[418]  Georgios S. Vernikos,et al.  The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants , 2008, Genome Biology.

[419]  O. Sahin,et al.  Critical Role of Multidrug Efflux Pump CmeABC in Bile Resistance and In Vivo Colonization of Campylobacter jejuni , 2003, Infection and Immunity.

[420]  W. Konings,et al.  Multidrug transporters and antibiotic resistance in Lactococcus lactis. , 2002, Biochimica et biophysica acta.

[421]  F. Yoshimura,et al.  Sixteen Homologs of the Mex-Type Multidrug Resistance Efflux Pump in Bacteroides fragilis , 2005, Antimicrobial Agents and Chemotherapy.

[422]  S. Fanning,et al.  Antimicrobial resistance in foodborne pathogens--a cause for concern? , 2008, Current drug targets.

[423]  J. Basu,et al.  Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosis. , 2002, The Biochemical journal.

[424]  E. Worobec,et al.  The role of the Serratia marcescens SdeAB multidrug efflux pump and TolC homologue in fluoroquinolone resistance studied via gene-knockout mutagenesis. , 2008, Microbiology.

[425]  E. Brown,et al.  Multicopy suppressors for novel antibacterial compounds reveal targets and drug efflux susceptibility. , 2004, Chemistry & biology.

[426]  C. King,et al.  Novel Tetracycline Resistance Determinant Isolated from an Environmental Strain of Serratia marcescens , 2007, Applied and Environmental Microbiology.

[427]  V. Tam,et al.  Prevalence, mechanisms, and risk factors of carbapenem resistance in bloodstream isolates of Pseudomonas aeruginosa. , 2007, Diagnostic microbiology and infectious disease.

[428]  Måns Ehrenberg,et al.  The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome. , 2003, Journal of molecular biology.

[429]  F. Kong,et al.  Three New Macrolide Efflux (mef) Gene Variants in Streptococcus agalactiae , 2007, Journal of Clinical Microbiology.

[430]  N. Gotoh,et al.  Rapid identification of mutations in a multidrug efflux pump in Pseudomonas aeruginosa , 1999, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[431]  M. Braoudaki,et al.  Adaptive Resistance to Biocides in Salmonella enterica and Escherichia coli O157 and Cross-Resistance to Antimicrobial Agents , 2004, Journal of Clinical Microbiology.

[432]  Jennifer L. Groh,et al.  Genes That Enhance the Ecological Fitness of Shewanella oneidensis MR-1 in Sediments Reveal the Value of Antibiotic Resistance , 2006, Applied and Environmental Microbiology.

[433]  D. Ince,et al.  Dual Targeting of DNA Gyrase and Topoisomerase IV: Target Interactions of Garenoxacin (BMS-284756, T-3811ME), a New Desfluoroquinolone , 2002, Antimicrobial Agents and Chemotherapy.

[434]  S. Payot,et al.  Relative contribution of target gene mutation and efflux to fluoroquinolone and erythromycin resistance, in French poultry and pig isolates of Campylobacter coli. , 2004, International journal of antimicrobial agents.