Sharp growth conditions for boundedness of maximal function in generalized Orlicz spaces

We study sharp growth conditions for the boundedness of the Hardy–Littlewood maximal function in the generalized Orlicz spaces. We assume that the generalized Orlicz function φ(x, t) satisfies the standard continuity properties (A0), (A1) and (A2). We show that if the Hardy–Littlewood maximal function is bounded from the generalized Orlicz space to itself then φ(x, t)/t is almost increasing for large t for some p > 1. Moreover we show that the Hardy–Littlewood maximal function is bounded from the generalized Orlicz space L(R) to itself if and only if φ is weakly equivalent to a generalized Orlicz function ψ satisfying (A0), (A1) and (A2) for which ψ(x, t)/t is almost increasing for all t > 0 and some p > 1.

[1]  Steven P. Lalley,et al.  Ergodic Theorem , 2011, International Encyclopedia of Statistical Science.

[2]  P. Hästö,et al.  The Riesz potential in generalized Orlicz spaces , 2016 .

[3]  L. Diening Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$ , 2004 .

[4]  T. Shimomura,et al.  Trudinger's inequality for Riesz potentials of functions in Musielak–Orlicz spaces , 2014 .

[5]  H. Kita On Hardy ‐ Littlewood Maximal Functions in Orlicz Spaces , 1997 .

[6]  L. Diening Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces , 2005 .

[7]  Y. Mizuta,et al.  Boundedness of maximal operators and Sobolevʼs inequality on Musielak–Orlicz–Morrey spaces , 2013 .

[8]  M. Ruzicka,et al.  An example of a space Lp(x) on which the Hardy-Littlewood maximal operator is not bounded , 2001 .

[9]  iuseppe,et al.  Regularity for double phase variational problems , 2014 .

[10]  T. Shimomura,et al.  Maximal and Riesz Potential Operators on Musielak–Orlicz Spaces Over Metric Measure Spaces , 2018, Integral Equations and Operator Theory.

[11]  D. Cruz-Uribe,et al.  THE MAXIMAL FUNCTION ON VARIABLE L p SPACES , 2022 .

[12]  A. Lerner Some remarks on the Hardy-Littlewood maximal function on variable Lp spaces , 2005 .

[13]  T. Lukkari,et al.  Riesz and Wolff potentials and elliptic equations in variable exponent weak Lebesgue spaces , 2012, Annali di Matematica Pura ed Applicata (1923 -).

[14]  On the natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva , 1990 .

[15]  P. Hästö,et al.  Iterated maximal functions in variable exponent Lebesgue spaces , 2011 .

[16]  P. Hästö,et al.  Lebesgue and Sobolev Spaces with Variable Exponents , 2011 .

[17]  J. Littlewood,et al.  A maximal theorem with function-theoretic applications , 1930 .

[18]  D. Gallardo Orlicz spaces for which the Hardy-Littlewood maximal operators is bounded , 1988 .

[19]  S. Byun,et al.  Calderón-Zygmund estimates for generalized double phase problems , 2020 .

[20]  Vít Musil Fractional maximal operator in Orlicz spaces , 2018, Journal of Mathematical Analysis and Applications.

[21]  A. Nekvinda Hardy-Littlewood maximal operator on L^p(x) (ℝ) , 2004 .

[22]  P. Hästö,et al.  MAXIMAL FUNCTIONS IN VARIABLE EXPONENT SPACES: LIMITING CASES OF THE EXPONENT , 2009 .

[23]  A. Nekvinda Maximal operator on variable Lebesgue spaces with radial exponent , 2019, Journal of Mathematical Analysis and Applications.

[24]  D. Cruz-Uribe,et al.  The Hardy–Littlewood Maximal Operator , 2014 .

[25]  Patrick Winkert,et al.  A new class of double phase variable exponent problems: Existence and uniqueness , 2021 .

[26]  P. Hästö,et al.  Orlicz Spaces and Generalized Orlicz Spaces , 2019, Lecture Notes in Mathematics.

[27]  P. Hästö The maximal operator on generalized Orlicz spaces , 2015 .

[28]  Y. Mizuta,et al.  Approximate identities and Young type inequalities in Musielak-Orlicz spaces , 2013, Czechoslovak Mathematical Journal.