TDT statistics for mapping quantitative trait loci

The original transmission disequilibrium test (TDT), was introduced to test for linkage between a marker and a disease‐susceptibility locus (Spielman et al. 1993). Allison (1997) extended the TDT procedure to quantitative traits. Allison's test, however, is restrictive in that it requires family trios consisting of one heterozygous parent, one homozygous parent and one child, and considers only the situation where the marker locus is analogous to the quantitative trait locus itself. In this paper, we propose, investigate and apply a general TDT for quantitative traits that permits more than one child per family, does not require only one parent to be heterozygous, and allows for the fact that the various alleles at the marker and trait loci may be at varying degree of linkage disequilibrium. We also show that this TDT for quantitative traits is still a valid test of linkage in the presence of population substructure. To provide guidelines for study design, we develop analytic formulae for calculation of the power of the TDT for mapping quantitative trait loci and investigate the impact of various factors on the power. Power calculations show that the proposed TDT for quantitative traits is more powerful than Allison's basic test statistic and the extreme discordant sib pair linkage method. The proposed TDT statistic for quantitative traits is applied to systolic blood pressure variation in the Rochester Family Heart Study using an extremely discordant sibling pair design.

[1]  E. Boerwinkle,et al.  Assessing genetic linkage and association with robust components of variance approaches , 1996, Annals of human genetics.

[2]  Francis S. Collins,et al.  Variations on a Theme: Cataloging Human DNA Sequence Variation , 1997, Science.

[3]  R. Doerge,et al.  Permutation tests for multiple loci affecting a quantitative character. , 1996, Genetics.

[4]  D. Curtis,et al.  An extended transmission/disequilibrium test (TDT) for multi‐allele marker loci , 1995, Annals of human genetics.

[5]  L. Andersson,et al.  Genetic mapping of quantitative trait loci for growth and fatness in pigs. , 1994, Science.

[6]  B S Weir,et al.  Tests for linkage and association in nuclear families. , 1997, American journal of human genetics.

[7]  W J Ewens,et al.  The TDT and other family-based tests for linkage disequilibrium and association. , 1996, American journal of human genetics.

[8]  S. R. Wilson,et al.  On extending the transmission/disequilibrium test (TDT) , 1997, Annals of human genetics.

[9]  J. Witte,et al.  Genetic dissection of complex traits. , 1994, Nature genetics.

[10]  L. Svetkey,et al.  Preliminary evidence of linkage of salt sensitivity in black Americans at the beta 2-adrenergic receptor locus. , 1997, Hypertension.

[11]  N E Morton,et al.  Error filtration, interference, and the human linkage map. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[12]  R. Doerge,et al.  Significance thresholds for QTL interval mapping tests , 1996, Heredity.

[13]  A sib-pair approach to interval mapping of quantitative trait loci. , 1994, American journal of human genetics.

[14]  H. Maeno,et al.  Dopamine Receptors , 2018 .

[15]  E. Boerwinkle,et al.  Linkage and association of adrenergic and dopamine receptor genes in the distal portion of the long arm of chromosome 5 with systolic blood pressure variation. , 1998, Human molecular genetics.

[16]  Franklin A. Graybill,et al.  Theory and Application of the Linear Model , 1976 .

[17]  B. Mangin,et al.  Approximate thresholds of interval mapping tests for QTL detection. , 1994, Genetics.

[18]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[19]  E. Boerwinkle,et al.  The GENNID Study: A resource for mapping the genes that cause NIDDM , 1996, Diabetes Care.

[20]  R. Elston,et al.  A more powerful robust sib‐pair test of linkage for quantitative traits , 1989, Genetic epidemiology.

[21]  R. Elston,et al.  Power and robustness of sib-pair linkage tests and extension to larger sibships , 1982 .

[22]  C. Sing,et al.  Distribution of sodium-lithium countertransport and blood pressure in Caucasians five to eighty-nine years of age. , 1989, Hypertension.

[23]  D. Curtis,et al.  Use of siblings as controls in case‐control association studies , 1997, Annals of human genetics.

[24]  N Risch,et al.  Extreme discordant sib pairs for mapping quantitative trait loci in humans. , 1995, Science.

[25]  R. Doerge,et al.  Empirical threshold values for quantitative trait mapping. , 1994, Genetics.

[26]  R. Elston,et al.  Robust methods for the detection of genetic linkage for quantitative data from pedigrees , 1989, Genetic epidemiology.

[27]  K. Davies,et al.  Genetic mapping of the human X chromosome by using restriction fragment length polymorphisms. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Z. Zeng Precision mapping of quantitative trait loci. , 1994, Genetics.

[29]  J. Weber,et al.  Sets of short tandem repeat polymorphisms for efficient linkage screening of the human genome. , 1995, Human molecular genetics.

[30]  D. Neale,et al.  Multiple marker mapping of quantitative trait loci in an outbred pedigree of loblolly pine , 1997, Theoretical and Applied Genetics.

[31]  J. Xu,et al.  A genetic map of Gibberella fujikuroi mating population A (Fusarium moniliforme). , 1996, Genetics.

[32]  W. Ewens,et al.  The transmission/disequilibrium test: history, subdivision, and admixture. , 1995, American journal of human genetics.

[33]  R. S. Spielman,et al.  A genome–wide search for human non–insulin–dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2 , 1996, Nature Genetics.

[34]  Shizhong Xu,et al.  A random model approach to interval mapping of quantitative trait loci. , 1995, Genetics.

[35]  D. Sibley,et al.  Role of the D1A dopamine receptor in the pathogenesis of genetic hypertension. , 1996, The Journal of clinical investigation.

[36]  A. Soulairac [Adrenergic receptors]. , 1966, La Presse medicale.

[37]  W. Ewens,et al.  Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). , 1993, American journal of human genetics.

[38]  K. Sax,et al.  The Association of Size Differences with Seed-Coat Pattern and Pigmentation in PHASEOLUS VULGARIS. , 1923, Genetics.

[39]  R. Davies Hypothesis testing when a nuisance parameter is present only under the alternative , 1977 .