Comparison of image features calculated in different dimensions for computer-aided diagnosis of lung nodules

Features calculated from different dimensions of images capture quantitative information of the lung nodules through one or multiple image slices. Previously published computer-aided diagnosis (CADx) systems have used either twodimensional (2D) or three-dimensional (3D) features, though there has been little systematic analysis of the relevance of the different dimensions and of the impact of combining different dimensions. The aim of this study is to determine the importance of combining features calculated in different dimensions. We have performed CADx experiments on 125 pulmonary nodules imaged using multi-detector row CT (MDCT). The CADx system computed 192 2D, 2.5D, and 3D image features of the lesions. Leave-one-out experiments were performed using five different combinations of features from different dimensions: 2D, 3D, 2.5D, 2D+3D, and 2D+3D+2.5D. The experiments were performed ten times for each group. Accuracy, sensitivity and specificity were used to evaluate the performance. Wilcoxon signed-rank tests were applied to compare the classification results from these five different combinations of features. Our results showed that 3D image features generate the best result compared with other combinations of features. This suggests one approach to potentially reducing the dimensionality of the CADx data space and the computational complexity of the system while maintaining diagnostic accuracy.

[1]  M. McNitt-Gray,et al.  The effects of co-occurrence matrix based texture parameters on the classification of solitary pulmonary nodules imaged on computed tomography. , 1999, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[2]  Ye Xu,et al.  MDCT-based 3-D texture classification of emphysema and early smoking related lung pathologies , 2006, IEEE Transactions on Medical Imaging.

[3]  Lilla Böröczky,et al.  Feature Subset Selection for Improving the Performance of False Positive Reduction in Lung Nodule CAD , 2005, IEEE Transactions on Information Technology in Biomedicine.

[4]  R. Truyen,et al.  Aspects of computer-aided detection (CAD) and volumetry of pulmonary nodules using multislice CT. , 2005, The British journal of radiology.

[5]  Kunio Doi,et al.  Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network , 2005, IEEE Transactions on Medical Imaging.

[6]  Larry J. Eshelman,et al.  The CHC Adaptive Search Algorithm: How to Have Safe Search When Engaging in Nontraditional Genetic Recombination , 1990, FOGA.

[7]  Hiroyuki Yoshida,et al.  Computer-Aided Diagnosis of Pulmonary Nodules in Chest Radiographs: Distinction of Nodules from False Positives based on Wavelet Snake and Artificial Neural Network , 1998 .

[8]  Lubomir M. Hadjiiski,et al.  Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours. , 2006, Medical physics.

[9]  Claus Bahlmann,et al.  Local pulmonary structure classification for computer-aided nodule detection , 2006, SPIE Medical Imaging.

[10]  Arunabha S. Roy,et al.  Automated lung nodule classification following automated nodule detection on CT: a serial approach. , 2003, Medical physics.