Molecular phylogenetics reveals Leontodon (Asteraceae, Lactuceae) to be diphyletic.

The plastid matK gene, trnL/F spacer, and nuclear rDNA ITS were sequenced for 36 species of Leontodon and 29 taxa of related genera of tribe Lactuceae. Phylogenetic relationships inferred from the independent and combined data are largely congruent and reveal that Leontodon sensu lato (s.l.) as presently defined is diphyletic: L. subgenus Leontodon forms a clade with Helminthotheca, Picris and Hypochaeris as sister genera, whereas L. subgenus Oporinia appears as a separate clade with strong bootstrap support and is thus better treated as a separate genus. Previous sectional classifications of Leontodon s.l. are considered in the light of DNA and additional morphological and karyological data. Support is presented for a core group of Hypochaeridinae sensu stricto (s.s.) with the two clades of Leontodon s.l., Helminthotheca, Picris, and Hypochaeris, whereas Urospermum, Hyoseris, Aposeris, and Rhagadiolus appear to be positioned more distantly.

[1]  C. Zidorn Sesquiterpenoids as chemosystematic markers in the subtribe Hypochaeridinae (Lactuceae, Asteraceae) , 2006 .

[2]  T. Stuessy,et al.  Nuclear ribosomal DNA and karyotypes indicate a NW African origin of South American Hypochaeris (Asteraceae, Cichorieae). , 2005, Molecular phylogenetics and evolution.

[3]  W. Greuter,et al.  Vaillant on Compositae-systematic concepts and nomenclatural impact , 2005 .

[4]  F. Garbari,et al.  Leontodon villarsii (Willd.) Loisel. and L. rosani (Ten.) DC. (Asteraceae): Nomenclatural, palynological, karyological, and micromorphological aspects , 2004 .

[5]  C. Neinhuis,et al.  Angiosperm phylogeny based on matK sequence information. , 2003, American journal of botany.

[6]  W. Greuter The Euro+Med treatment of Cardueae (Compositae) — generic concepts and required new names , 2003 .

[7]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[8]  M. Chase,et al.  Phylogenetics of Cranichideae with emphasis on Spiranthinae (Orchidaceae, Orchidoideae): evidence from plastid and nuclear DNA sequences. , 2003, American journal of botany.

[9]  T. Stuessy,et al.  Phylogenetic relationships among species of Hypochaeris (Asteraceae, Cichorieae) based on ITS, plastid trnL intron, trnL-F spacer, and matK sequences. , 2003, American journal of botany.

[10]  G. Kamari,et al.  Karyotaxonomy of Greek serpentine angiosperms , 2002 .

[11]  M. Chase,et al.  Molecular systematics of Iridaceae: evidence from four plastid DNA regions. , 2001, American journal of botany.

[12]  H. Stuppner,et al.  Chemosystematics of taxa from the Leontodon section Oporinia. , 2001, Biochemical systematics and ecology.

[13]  H. Stuppner,et al.  On the occurrence of glucozaluzanin C in Leontodon cichoraceus and its chemotaxonomic significance. , 2001, Biochemical systematics and ecology.

[14]  B. Payseur,et al.  Failure of the ILD to determine data combinability for slow loris phylogeny. , 2001, Systematic biology.

[15]  H. Stuppner,et al.  Evaluation of chemosystematic characters in the genus Leontodon ( Asteraceae ) , 2001 .

[16]  Milan Smalla Studies in the Compositae of the Arabian Peninsula and Socotra — 6. The Hypochaeridinae (Lactuceae) in the Arabian Peninsula , 2000 .

[17]  W. M. Whitten,et al.  Subtribal and generic relationships of Maxillarieae (Orchidaceae) with emphasis on Stanhopeinae: combined molecular evidence. , 2000, American journal of botany.

[18]  S. Aoki,et al.  Molecular Phylogeny of Nicotiana (Solanaceae) Based on the Nucleotide Sequence of the matK Gene , 2000 .

[19]  S. Kelchner,et al.  Phylogeny of South African Gnaphalieae (Asteraceae) based on two noncoding chloroplast sequences. , 2000, American journal of botany.

[20]  S. Kelchner The Evolution of Non-Coding Chloroplast DNA and Its Application in Plant Systematics , 2000 .

[21]  T. Hedderson,et al.  A phylogenetic study of the palm family (Palmae) based on chloroplast DNA sequences from thetrnL —trnF region , 1999, Plant Systematics and Evolution.

[22]  T. Souza-Chies,et al.  Molecular phylogeny of the genus Hypochaeris using internal transcribed spacers of nuclear rDNA: inference for chromosomal evolution. , 1998, Molecular biology and evolution.

[23]  M. Siddall Prior agreement: arbitration or arbitrary? , 1997, Systematic biology.

[24]  Carol J. Bult,et al.  Constructing a Significance Test for Incongruence , 1995 .

[25]  M T Clegg,et al.  Rates and patterns of chloroplast DNA evolution. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[26]  R. Vogt,et al.  Chromosome Numbers of North African Phanerogams. II , 1993 .

[27]  Rainer Fuchs,et al.  CLUSTAL V: improved software for multiple sequence alignment , 1992, Comput. Appl. Biosci..

[28]  B. G. Baldwin Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the compositae. , 1992, Molecular phylogenetics and evolution.

[29]  P. Taberlet,et al.  Universal primers for amplification of three non-coding regions of chloroplast DNA , 1991, Plant Molecular Biology.

[30]  Á. Izuzquiza A new species and two new combinations of Leontodon (Asteraceae, Hypochoeridinae) , 1991 .

[31]  J. Oliver,et al.  The general stochastic model of nucleotide substitution. , 1990, Journal of theoretical biology.

[32]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[33]  Á. Löve CHROMOSOME NUMBER REPORTS LXIX , 1980 .

[34]  H. Lack The genusPicris (Asteraceae, Lactuceae) in Tropical Africa , 1979, Plant Systematics and Evolution.

[35]  J. Shaw,et al.  The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. , 2005, American journal of botany.

[36]  G. Serio,et al.  A new method for calculating evolutionary substitution rates , 2005, Journal of Molecular Evolution.

[37]  H. Stuppner,et al.  A New Eudesmane Derivative from Leontodon tuberosus , 2004 .

[38]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[39]  R. Jansen,et al.  Phylogenetic relationships among the genera of the subtribe Sonchinae (Asteraceae): evidence from ITS sequences , 1996 .

[40]  R. Jansen,et al.  Phylogenetic relationships and patterns of character change in the tribe Lactuceae (Asteraceae) based on chloroplast DNA restriction site variation , 1995 .

[41]  Michael J. Sanderson,et al.  Erratum: The ITS Region of Nuclear Ribosomal DNAZ: A Valuable Source of Evidence on Angiosperm Phylogeny , 1995 .

[42]  S. Holzapfel A revision of the genus Picris (Asteraceae, Lactuceae) s.l. in Australia. , 1994 .

[43]  G. Feliner,et al.  Cytotaxonomic notes on the genus Leontodon (Asteraceae, Hypochoeridinae) , 1991 .

[44]  K. H. Wolfe CHAPTER 15 – Protein-Coding Genes in Chloroplast DNA: Compilation of Nucleotide Sequences, Data Base Entries, and Rates of Molecular Evolution , 1991 .

[45]  M. Terrasi,et al.  Chromosome counts of flowering plant from N. Cyrenaica , 1990 .

[46]  P. Colombo,et al.  Números cromosomáticos de plantas occidentales, 556-567 , 1989 .

[47]  E. Pahlich,et al.  A rapid DNA isolation procedure for small quantities of fresh leaf tissue , 1980 .

[48]  F. Widder Die Gliederung der Gattung Leontodon , 1975 .

[49]  A. P. D. Candolle Prodromus systematis naturalis regni vegetabilis , 1968 .

[50]  P. Ozenda,et al.  Flore du Sahara septentrional et central , 1958 .