Templating and Replication of Spiral Photonic Crystals for Silicon Photonics

This paper describes femtosecond laser lithography of 3-D photonic crystal templates in commercial photoresist SU-8 and replication of these templates with silicon. Using this approach, silicon-based photonic crystals having 3-D square spiral architecture and exhibiting photonic stop gaps near the 2.5- mum wavelength were fabricated. Possibilities to use a multiple-beam interference technique for two-photon absorption templating of photonic crystals are explored.

[1]  Raymond C Rumpf,et al.  Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[2]  Saulius Juodkazis,et al.  Two-photon lithography of nanorods in SU-8 photoresist , 2005 .

[3]  S. Noda,et al.  Full three-dimensional photonic bandgap crystals at near-infrared wavelengths , 2000, Science.

[4]  Susumu Noda,et al.  SPIRAL THREE-DIMENSIONAL PHOTONIC-BAND-GAP STRUCTURE , 1998 .

[5]  Michael J. Brett,et al.  Optical properties of a three-dimensional silicon square spiral photonic crystal , 2003 .

[6]  Ping Sheng,et al.  Chiral microstructures (spirals) fabrication by holographic lithography. , 2005, Optics express.

[7]  L Z Cai,et al.  All fourteen Bravais lattices can be formed by interference of four noncoplanar beams. , 2002, Optics letters.

[8]  Saulius Juodkazis,et al.  Reduction of capillary force for high-aspect ratio nanofabrication , 2005 .

[9]  R. G. Denning,et al.  Fabrication of photonic crystals for the visible spectrum by holographic lithography , 2000, Nature.

[10]  Susumu Noda,et al.  Three-dimensional photonic crystals operating at optical wavelength region , 2000 .

[11]  Saulius Juodkazis,et al.  Three-dimensional horizontal circular spiral photonic crystals with stop gaps below 1μm , 2006 .

[12]  Martin Wegener,et al.  New Route to Three‐Dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates , 2006 .

[13]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[14]  Saulius Juodkazis,et al.  Spiral three-dimensional photonic crystals for telecommunications spectral range , 2006 .

[15]  Martin Maldovan,et al.  Diamond-structured photonic crystals , 2004, Nature materials.

[16]  Michael Brett,et al.  Square spiral 3D photonic bandgap crystals at telecommunications frequencies. , 2005, Optics express.

[17]  Kurt Busch,et al.  Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations , 2003 .

[18]  G. Ozin,et al.  Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres , 2000, Nature.

[19]  Saulius Juodkazis,et al.  Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses , 2003 .

[20]  Saulius Juodkazis,et al.  Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8 , 2006 .

[21]  Saulius Juodkazis,et al.  Three‐Dimensional Spiral‐Architecture Photonic Crystals Obtained By Direct Laser Writing , 2005 .

[22]  Michael J. Brett,et al.  Fabrication of Tetragonal Square Spiral Photonic Crystals , 2002 .

[23]  Saulius Juodkazis,et al.  Three-dimensional woodpile photonic crystal templates for the infrared spectral range. , 2004, Optics letters.

[24]  Ovidiu Toader,et al.  Square spiral photonic crystals: robust architecture for microfabrication of materials with large three-dimensional photonic band gaps. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Saulius Juodkazis,et al.  Three-dimensional Recording by Femtosecond Pulses in Polymer Materials , 2003 .

[26]  Ovidiu Toader,et al.  Photonic band gap architectures for holographic lithography. , 2004, Physical review letters.

[27]  S. John,et al.  Experimental realization of a well-controlled 3D silicon spiral photonic crystal , 2007 .

[28]  Steven G. Johnson,et al.  Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. , 2001, Optics express.

[29]  Saulius Juodkazis,et al.  Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8. , 2006, Optics express.

[30]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[31]  K. Nelson,et al.  How to make femtosecond pulses overlap. , 1998, Optics letters.

[32]  S. John,et al.  Photonic band gap templating using optical interference lithography. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Ludovico Cademartiri,et al.  Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths , 2006, Nature materials.

[34]  M. Gu,et al.  Advanced Optical Imaging Theory , 1999 .

[35]  Ovidiu Toader,et al.  Photonic band-gap formation by optical-phase-mask lithography. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Saulius Juodkazis,et al.  Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals , 2001 .

[37]  B J Schwartz,et al.  Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures. , 1998, Optics letters.

[38]  Saulius Juodkazis,et al.  Fabrication of three-dimensional periodic microstructures in photoresist SU-8 by phase-controlled holographic lithography , 2006 .

[39]  Ovidiu Toader,et al.  Proposed Square Spiral Microfabrication Architecture for Large Three-Dimensional Photonic Band Gap Crystals , 2001, Science.

[40]  Saulius Juodkazis,et al.  Application of femtosecond laser pulses for microfabrication of transparent media , 2002 .

[41]  Hiroaki Misawa,et al.  Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin , 1999 .

[42]  Steven G. Johnson,et al.  A three-dimensional optical photonic crystal with designed point defects , 2004, Nature.

[43]  Saulius Juodkazis,et al.  Three-dimensional circular spiral photonic crystal structures recorded by femtosecond pulses , 2006 .