Robust Facial Expression Recognition via Compressive Sensing

Recently, compressive sensing (CS) has attracted increasing attention in the areas of signal processing, computer vision and pattern recognition. In this paper, a new method based on the CS theory is presented for robust facial expression recognition. The CS theory is used to construct a sparse representation classifier (SRC). The effectiveness and robustness of the SRC method is investigated on clean and occluded facial expression images. Three typical facial features, i.e., the raw pixels, Gabor wavelets representation and local binary patterns (LBP), are extracted to evaluate the performance of the SRC method. Compared with the nearest neighbor (NN), linear support vector machines (SVM) and the nearest subspace (NS), experimental results on the popular Cohn-Kanade facial expression database demonstrate that the SRC method obtains better performance and stronger robustness to corruption and occlusion on robust facial expression recognition tasks.

[1]  V. Kshirsagar,et al.  Face recognition using Eigenfaces , 2011, 2011 3rd International Conference on Computer Research and Development.

[2]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[3]  Michael J. Lyons,et al.  Automatic Classification of Single Facial Images , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Shaogang Gong,et al.  Facial expression recognition based on Local Binary Patterns: A comprehensive study , 2009, Image Vis. Comput..

[5]  R.G. Baraniuk,et al.  Compressive Sensing [Lecture Notes] , 2007, IEEE Signal Processing Magazine.

[6]  Baoxin Li,et al.  A compressive sensing approach for expression-invariant face recognition , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Fadi Dornaika,et al.  Improving dynamic facial expression recognition with feature subset selection , 2011, Pattern Recognit. Lett..

[8]  Thomas Serre,et al.  A Component-based Framework for Face Detection and Identification , 2007, International Journal of Computer Vision.

[9]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  LinLin Shen,et al.  Gabor wavelets and General Discriminant Analysis for face identification and verification , 2007, Image Vis. Comput..

[11]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[12]  Hazem M. El-Bakry,et al.  New fast principal component analysis for real-time face detection , 2009 .

[13]  Shiqing Zhang,et al.  Facial Expression Recognition Based on Local Binary Patterns and Kernel Discriminant Isomap , 2011, Sensors.

[14]  Shaogang Gong,et al.  Robust facial expression recognition using local binary patterns , 2005, IEEE International Conference on Image Processing 2005.

[15]  Stephen P. Boyd,et al.  An Interior-Point Method for Large-Scale $\ell_1$-Regularized Least Squares , 2007, IEEE Journal of Selected Topics in Signal Processing.

[16]  Nasser Kehtarnavaz,et al.  Facial expression recognition based on diffeomorphic matching , 2010, 2010 IEEE International Conference on Image Processing.

[17]  Marian Stewart Bartlett,et al.  Classifying Facial Actions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[19]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[21]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Nicu Sebe,et al.  Authentic facial expression analysis , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[23]  John G. Daugman,et al.  Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression , 1988, IEEE Trans. Acoust. Speech Signal Process..

[24]  E. Vesterinen,et al.  Affective Computing , 2009, Encyclopedia of Biometrics.

[25]  W. Zheng,et al.  Facial expression recognition using kernel canonical correlation analysis (KCCA) , 2006, IEEE Transactions on Neural Networks.

[26]  Di Huang,et al.  Local Binary Patterns and Its Application to Facial Image Analysis: A Survey , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[27]  Ganesh K. Venayagamoorthy,et al.  Recognition of facial expressions using Gabor wavelets and learning vector quantization , 2008, Eng. Appl. Artif. Intell..

[28]  Takeo Kanade,et al.  Facial Expression Analysis , 2011, AMFG.

[29]  E. Candes,et al.  11-magic : Recovery of sparse signals via convex programming , 2005 .

[30]  Oksam Chae,et al.  Robust Facial Expression Recognition Based on Local Directional Pattern , 2010 .

[31]  Guillermo Sapiro,et al.  Sparse Representation for Computer Vision and Pattern Recognition , 2010, Proceedings of the IEEE.

[32]  Gwen Littlewort,et al.  Recognizing facial expression: machine learning and application to spontaneous behavior , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[33]  Takeo Kanade,et al.  Recognizing Action Units for Facial Expression Analysis , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Nadia Bianchi-Berthouze,et al.  Naturalistic Affective Expression Classification by a Multi-stage Approach Based on Hidden Markov Models , 2011, ACII.

[35]  Takeo Kanade,et al.  Comprehensive database for facial expression analysis , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[36]  Fernando De la Torre,et al.  Facial Expression Analysis , 2011, Visual Analysis of Humans.

[37]  David J. Kriegman,et al.  Acquiring linear subspaces for face recognition under variable lighting , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Ioannis Pitas,et al.  Facial Expression Recognition in Image Sequences Using Geometric Deformation Features and Support Vector Machines , 2007, IEEE Transactions on Image Processing.