Remote sensing of water vapor in the near IR from EOS/MODIS

The LOWTRAN-7 code was used to simulate remote sensing of water vapor over 20 different surface covers. The simulation was used to optimize the water vapor channel selection and to test the accuracy of the remote sensing method. The channel selection minimizes the uncertainty in the derived water vapor due to variations in the spectral dependence of the surface reflectance. The selection also minimizes the sensitivity of the selected channels to possible drift in the channel position. The use of additional MODIS channels reduces the errors due to the effect of haze, subpixel clouds and uncertainties in the temperature profile. Remote sensing of the variation of water vapor from day to day will be more accurate, because the surface reflectances vary slowly with time. The method was applied to Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data. >

[1]  A. Goetz,et al.  Column atmospheric water vapor and vegetation liquid water retrievals from Airborne Imaging Spectrometer data , 1990 .

[2]  W. Paul Menzel,et al.  Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS) , 1992, IEEE Trans. Geosci. Remote. Sens..

[3]  Yoram J. Kaufman,et al.  Satellite measurements of large‐scale air pollution: Methods , 1990 .

[4]  F. E. Fowle,et al.  The Spectroscopic Determination of Aqueous Vapor , 1912 .

[5]  Yoram J. Kaufman,et al.  Remote sensing of biomass burning in the tropics , 1990 .

[6]  Y. Kaufman,et al.  Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery , 1988 .

[7]  V. Ramanathan,et al.  Observational determination of the greenhouse effect , 1989, Nature.

[8]  Thomas F. Eck,et al.  Precipitable water in the Sahel measured using sun photometry. , 1990 .

[9]  A. Goetz,et al.  The high resolution imaging spectrometer (HIRIS) for Eos , 1989 .

[10]  V. Salomonson,et al.  MODIS: advanced facility instrument for studies of the Earth as a system , 1989 .

[11]  Wayne D. Robinson,et al.  Low-level water vapor fields from the VISSR Atmospheric Sounder (VAS) 'split window' channels , 1982 .

[12]  J. Susskind,et al.  Remote Sensing of Weather and Climate Parameters From , 1984 .

[13]  Ronald M. Welch,et al.  Cumulus Cloud Properties Derived Using Landsat Satellite Data , 1986 .

[14]  Robert J. Charlson,et al.  The atmospheric aerosol system: An overview , 1983 .

[15]  Robert Frouin,et al.  A differential absorption technique to estimate atmospheric total water vapor amounts , 1990 .

[16]  R. Fraser,et al.  The Relative Importance of Aerosol Scattering and Absorption in Remote Sensing , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Gary J. Jedlovec,et al.  Precipitable water estimation from high-resolution split window radiance measurements , 1990 .

[18]  David M. Gates INFRARED DETERMINATION OF PRECIPITABLE WATER VAPOR IN A VERTICAL COLUMN OF THE EARTH'S ATMOSPHERE , 1956 .

[19]  M. Iqbal,et al.  THE SOLAR CONSTANT AND ITS SPECTRAL DISTRIBUTION , 1983 .

[20]  M. Iqbal An introduction to solar radiation , 1983 .

[21]  Wayne D. Robinson,et al.  Optimized Retrievals of Precipitable Water from the VAS “Split Window” , 1987 .

[22]  C. Justice,et al.  The effect of water vapour on the normalized difference vegetation index derived for the Sahelian region from NOAA AVHRR data , 1991 .

[23]  Benjamin M. Herman,et al.  WATER VAPOR MEASUREMENTS IN THE 0. 94 MICRON ABSORPTION BAND: CALIBRATION, MEASUREMENTS AND DATA APPLICATIONS. , 1987 .

[24]  Robert Frouin,et al.  Determination from Space of Atmospheric Total Water Vapor Amounts by Differential Absorption near 940 nm: Theory and Airborne Verification , 1990 .

[25]  C. Prabhakara,et al.  Remote sensing of precipitable water over the oceans from Nimbus 7 microwave measurements , 1982 .

[26]  Daniel Birkenheuer An Algorithm for Operational Water Vapor Analyses Integrating GOES and Dual-Channel Microwave Radiometer Data on the Local Scale , 1991 .

[27]  Christopher M. Hayden,et al.  GOES-VAS Simultaneous Temperature-Moisture Retrieval Algorithm , 1988 .

[28]  Bo-Cai Gao,et al.  Column Atmospheric Water Vapor Retrievals From Awborne Imaging Spectrometer Data , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[29]  John F. B. Mitchell,et al.  Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models , 1990 .

[30]  Larry M. McMillin,et al.  Retrieval of Precipitable Water from Observations in the Split Window over Varying Surface Temperatures , 1990 .

[31]  F. Volz Economical Multispectral Sun Photometer for Measurements of Aerosol Extinction from 0.44 mum to 1.6 mum and Precipitable Water. , 1974, Applied optics.

[32]  Didier Tanré,et al.  Estimation of Saharan aerosol optical thickness from blurring effects in thematic mapper data , 1988 .

[33]  D. E. Bowker,et al.  Spectral reflectances of natural targets for use in remote sensing studies , 1985 .

[34]  J. Susskind,et al.  First-Guess Dependence of a Physically Based Set of Temperature Humidity Retrievals from HIRS2/MSU Data , 1988 .