Circuit lower bounds for Merlin-Arthur classes

We show that for each $k>0$, $\mathsf{MA}/1$ ($\mathsf{MA}$ with 1 bit of advice) does not have circuits of size $n^k$. This implies the first superlinear circuit lower bounds for the promise versions of the classes $\mathsf{MA}$, $\mathsf{AM}$, and $\mathsf{ZPP}_{\parallel}^{\mathsf{NP}}$. We extend our main result in several ways. For each $k$, we give an explicit language in $(\mathsf{MA}\cap\mathsf{coMA})/1$ which does not have circuits of size $n^k$. We also adapt our lower bound to the average-case setting; i.e., we show that $\mathsf{MA}/1$ cannot be solved on more than $1/2+1/n^k$ fraction of inputs of length $n$ by circuits of size $n^k$. Furthermore, we prove that $\mathsf{MA}$ does not have arithmetic circuits of size $n^k$ for any $k$. As a corollary to our main result, we obtain that derandomization of $\mathsf{MA}/O(1)$ implies the existence of pseudorandom generators computable using $O(1)$ bits of advice.

[1]  N. V. Vinodchandran A note on the circuit complexity of PP , 2005, Theor. Comput. Sci..

[2]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[3]  Noam Nisan,et al.  Hardness vs Randomness , 1994, J. Comput. Syst. Sci..

[4]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[5]  Boaz Barak,et al.  A Probabilistic-Time Hierarchy Theorem for "Slightly Non-uniform" Algorithms , 2002, RANDOM.

[6]  Luca Trevisan,et al.  From logarithmic advice to single-bit advice , 2004, Electron. Colloquium Comput. Complex..

[7]  Dieter van Melkebeek,et al.  Graph nonisomorphism has subexponential size proofs unless the polynomial-time hierarchy collapses , 1999, STOC '99.

[8]  Luca Trevisan,et al.  Pseudorandom generators without the XOR lemma , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[9]  N. K. Vereschchagin On the power of PP , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.

[10]  Osamu Watanabe,et al.  New Collapse Consequences of NP Having Small Circuits , 1995, ICALP.

[11]  Luca Trevisan,et al.  Pseudorandomness and average-case complexity via uniform reductions , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[12]  Sampath Kannan,et al.  Oracles and Queries That Are Sufficient for Exact Learning , 1996, J. Comput. Syst. Sci..

[13]  Carsten Lund,et al.  Non-deterministic exponential time has two-prover interactive protocols , 1992, computational complexity.

[14]  Leslie G. Valiant,et al.  Completeness classes in algebra , 1979, STOC.

[15]  Andrew Chi-Chih Yao,et al.  Theory and application of trapdoor functions , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[16]  Carsten Lund,et al.  Algebraic methods for interactive proof systems , 1992, JACM.

[17]  Joan Feigenbaum,et al.  Random-Self-Reducibility of Complete Sets , 1993, SIAM J. Comput..

[18]  Luca Trevisan,et al.  On worst-case to average-case reductions for NP problems , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[19]  Oded Goldreich,et al.  Another proof that bpp?ph (and more) , 1997 .

[20]  Oded Goldreich,et al.  Another proof that BPP subseteq PH (and more) , 1997, Electron. Colloquium Comput. Complex..

[21]  Carsten Lund,et al.  Non-deterministic exponential time has two-prover interactive protocols , 2005, computational complexity.

[22]  Osamu Watanabe,et al.  On Proving Circuit Lower Bounds against the Polynomial-Time Hierarchy , 2004, SIAM J. Comput..

[23]  Alexander Russell,et al.  Symmetric alternation captures BPP , 1998, computational complexity.

[24]  Oscar H. Ibarra,et al.  Probabilistic Algorithms for Deciding Equivalence of Straight-Line Programs , 1983, JACM.

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  Vikraman Arvind,et al.  On pseudorandomness and resource-bounded measure , 2001, Theor. Comput. Sci..

[27]  Avi Wigderson,et al.  In search of an easy witness: exponential time vs. probabilistic polynomial time , 2001, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[28]  A. Razborov Lower bounds on the size of bounded depth circuits over a complete basis with logical addition , 1987 .

[29]  Lance Fortnow,et al.  Hierarchy theorems for probabilistic polynomial time , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[30]  Ravi Kannan,et al.  Circuit-Size Lower Bounds and Non-Reducibility to Sparse Sets , 1982, Inf. Control..

[31]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[32]  Emanuele Viola,et al.  The complexity of constructing pseudorandom generators from hard functions , 2005, computational complexity.

[33]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[34]  R. Solovay,et al.  Relativizations of the $\mathcal{P} = ?\mathcal{NP}$ Question , 1975 .

[35]  Johan Håstad,et al.  Almost optimal lower bounds for small depth circuits , 1986, STOC '86.

[36]  Rahul Santhanam Circuit lower bounds for Merlin-Arthur classes , 2007, STOC '07.

[37]  Manuel Blum,et al.  Designing programs that check their work , 1989, STOC '89.

[38]  Russell Impagliazzo,et al.  Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds , 2003, STOC '03.

[39]  Lane A. Hemaspaandra,et al.  Threshold Computation and Cryptographic Security , 1993, ISAAC.

[40]  Lance Fortnow,et al.  Nonrelativizing separations , 1998, Proceedings. Thirteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat. No.98CB36247).

[41]  Seinosuke Toda On the computational power of PP and (+)P , 1989, 30th Annual Symposium on Foundations of Computer Science.

[42]  Roman Smolensky,et al.  Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.

[43]  Christopher B. Wilson Relativized circuit complexity , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[44]  Nikolai K. Vereshchagin On The Power of PP , 1992, Computational Complexity Conference.

[45]  Avi Wigderson,et al.  Algebrization: A New Barrier in Complexity Theory , 2009, TOCT.

[46]  Ryan O'Donnell,et al.  Hardness amplification within NP , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[47]  Alexander A. Razborov,et al.  Natural Proofs , 1997, J. Comput. Syst. Sci..

[48]  Scott Aaronson,et al.  Oracles are subtle but not malicious , 2005, 21st Annual IEEE Conference on Computational Complexity (CCC'06).