Controlling QCLs for frequency metrology from the infrared to the THz range

The Quantum Cascade Laser is becoming a key tool for plenty of applications, from the IR to the THz range. Progress in nearby areas, such as the development of ultra-low loss crystalline microresonators, optical frequency standards and optical fiber networks for time&frequency dissemination, are paving the way to unprecedented applications in many fields. For the most demanding applications, a thorough control of quantum cascade lasers (QCLs) emission must be achieved. In the last few years, QCLs unique spectral features have been unveiled, while multifrequency, comb-like QCLs have been demonstrated. Ultra-narrow frequency linewidths are necessary for metrological applications, ranging from cold molecules interaction and ultra-high sensitivity spectroscopy to infrared/THz metrology. In our group, we are combining crystalline microresonators, with a combined high quality factor in the infrared and ultra-broadband spectral coverage, with QCLs and other nonlinear highly coherent and frequency referenced sources. Frequency referencing to optical fiber-distributed optical primary standards offers astonishing stability values of 10-16 @1-sec timescales in laboratory environments but several hundred kilometres far away from the primary clocks. A review will be given of the present status of research in this field, with a view to perspectives and future applications.

[1]  Simone Borri,et al.  Frequency stability characterization of a quantum cascade laser frequency comb , 2016 .

[2]  Bellini,et al.  Hyperfine structure and isotope shift in the far-infrared ground-state transitions of atomic oxygen. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[3]  S. Borri,et al.  Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm. , 2010, Optics letters.

[4]  Simone Borri,et al.  Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing , 2016, Sensors.

[5]  W. A. Peebles,et al.  Instrumentation for magnetically confined fusion plasma diagnostics , 1984 .

[6]  Lim Infrared radiation generated by quasi-phase-matched difference-frequency mixing in a periodically poled lithium niobate waveguide , 1999 .

[7]  Burghard Lipphardt,et al.  Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements , 2002 .

[8]  Naota Akikusa,et al.  Spectroscopic detection of radiocarbon dioxide at parts-per-quadrillion sensitivity , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[9]  David A. Ritchie,et al.  Terahertz quantum cascade laser as local oscillator in a heterodyne receiver. , 2005, Optics express.

[10]  D. Mittleman Sensing with terahertz radiation , 2003 .

[11]  P. De Natale,et al.  Terahertz Frequency Metrology for Spectroscopic Applications: a Review , 2017 .

[12]  Manijeh Razeghi,et al.  Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers , 2016, Scientific Reports.

[13]  J. Faist,et al.  Mid-infrared frequency comb based on a quantum cascade laser , 2012, Nature.

[14]  Gianluca Galzerano,et al.  Narrow-linewidth quantum cascade laser at 8.6 μm. , 2014, Optics letters.

[15]  A. Wittmann,et al.  Microwatt-level terahertz sources based on intra-cavity difference-frequency generation in mid-infrared quantum cascade lasers , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[16]  Jun Ye,et al.  Demonstration of a HeNe/CH4-based optical molecular clock. , 2005, Optics letters.

[17]  T. L. Myers,et al.  Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission , 2002 .

[18]  Anatoliy A. Savchenkov,et al.  Generation of Kerr combs centered at 4.5{\mu}m in crystalline microresonators pumped by quantum cascade lasers , 2015 .

[19]  Seungyong Jung,et al.  External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range , 2014 .

[20]  Massimo Inguscio,et al.  Generation of tunable far-infrared radiation with a quantum cascade laser. , 2002, Optics letters.

[21]  Seungyong Jung,et al.  Widely tunable terahertz source based on intra-cavity frequency mixing in quantum cascade laser arrays , 2015 .

[22]  F. Capasso,et al.  Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation , 2007 .

[23]  S. Borri,et al.  Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser. , 2011, Optics express.

[24]  P. Maddaloni,et al.  Laser-Based Measurements for Time and Frequency Domain Applications : A Handbook , 2013 .

[25]  C. Lecaplain,et al.  Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials , 2016, Nature Communications.

[26]  S Borri,et al.  Saturated-absorption cavity ring-down spectroscopy. , 2010, Physical review letters.

[27]  Massimo Inguscio,et al.  LABORATORY MEASUREMENTS OF ROTATIONAL TRANSITIONS OF LITHIUM HYDRIDE IN THE FAR-INFRARED , 1994 .

[28]  Massimo Inguscio,et al.  Quantum-limited frequency fluctuations in a terahertz laser , 2012, Nature Photonics.

[29]  Seungyong Jung,et al.  Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources , 2014, Nature Communications.

[30]  H. Beere,et al.  Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers , 2012, Nature Communications.

[31]  G Santarelli,et al.  Phase-locking of a 2.5 THz quantum cascade laser to a frequency comb using a GaAs photomixer. , 2011, Optics letters.

[32]  A. Davies,et al.  Terahertz semiconductor-heterostructure lasers , 2002, Summaries of Papers Presented at the Lasers and Electro-Optics. CLEO '02. Technical Diges.

[33]  A. Heske,et al.  The Herschel/Planck programme - technical challenges for two science missions , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[34]  Seungyong Jung,et al.  Spectral purity and tunability of terahertz quantum cascade laser sources based on intracavity difference-frequency generation , 2017, Science Advances.

[35]  Lee D. Feinberg,et al.  Scientific motivation and technology requirements for the SPIRIT and SPECS far-infrared/submillimeter space interferometers , 2000, Astronomical Telescopes + Instrumentation.

[36]  K. Evenson,et al.  Tunable far-infrared spectroscopy , 1984 .

[37]  A. Davies,et al.  Linewidth and tuning characteristics of terahertz quantum cascade lasers. , 2004, Optics letters.

[38]  J. Faist,et al.  Frequency noise of free-running 4.6 μm distributed feedback quantum cascade lasers near room temperature. , 2011, Optics letters.

[39]  Zink,et al.  Far-infrared self-broadening in methylcyanide: Absorber-perturber resonance. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[40]  B S Williams,et al.  Frequency and phase-lock control of a 3 THz quantum cascade laser. , 2005, Optics letters.

[41]  G. Giusfredi,et al.  Frequency-comb-based absolute frequency measurements in the mid-infrared with a difference-frequency spectrometer. , 2005, Optics letters.

[42]  G. Giusfredi,et al.  Ultra-stable, widely tunable and absolutely linked mid-IR coherent source. , 2009, Optics express.

[43]  K. M. Chung,et al.  Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling. , 2012, Optics express.

[44]  Jérôme Faist,et al.  Dual-comb spectroscopy based on quantum cascade laser frequency combs , 2015, CLEO 2015.

[45]  Lute Maleki,et al.  Optical resonators with ten million finesse. , 2007, Optics express.

[46]  S. Borri,et al.  Subkilohertz linewidth room-temperature mid-infrared quantum cascade laser using a molecular sub-Doppler reference. , 2012, Optics letters.

[47]  K. Evenson,et al.  Tunable far-infrared spectroscopy extended to 9.1THz. , 1999, Optics letters.

[48]  Zink,et al.  Laser magnetic-resonance measurement of the 3P1-3P2 fine-structure splittings in 17O and 18O. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[49]  F. Capasso,et al.  New frontiers in quantum cascade lasers: high performance room temperature terahertz sources , 2015 .

[50]  Seungyong Jung,et al.  Spectroscopic Study of Terahertz Generation in Mid-Infrared Quantum Cascade Lasers , 2016, Scientific Reports.

[51]  Massimo Inguscio,et al.  Tunable far infrared spectroscopy of 16O3 ozone , 1992 .

[52]  David A. Ritchie,et al.  Frequency-Comb-Assisted Terahertz Quantum Cascade Laser Spectroscopy , 2014 .

[53]  Jerome Faist,et al.  Intrinsic linewidth of quantum cascade laser frequency combs , 2015, 1506.06262.

[54]  Francesco S. Pavone,et al.  Rotational far infrared spectrum of 13CO , 1990 .

[55]  Simone Borri,et al.  Microcavity-stabilized quantum cascade laser , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[56]  Seungyong Jung,et al.  Recent Progress in Widely Tunable Single-Mode Room Temperature Terahertz Quantum Cascade Laser Sources , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[57]  Marcella Giovannini,et al.  Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser. , 2005, Optics letters.

[58]  M. A. Frerking,et al.  Generation of tunable laser sidebands in the far‐infrared region , 1985 .

[59]  Karun Vijayraghavan,et al.  Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers , 2012 .

[60]  G Santarelli,et al.  Measurement of the intrinsic linewidth of terahertz quantum cascade lasers using a near-infrared frequency comb. , 2012, Optics express.

[61]  Carlo Sirtori,et al.  Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser , 2010 .

[62]  Ursula Keller,et al.  Fully stabilized optical frequency comb with sub-radian CEO phase noise from a SESAM-modelocked 1.5-µm solid-state laser. , 2011, Optics express.

[63]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[64]  Qing Hu,et al.  Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser , 2006 .

[65]  Dane D. Bicanic,et al.  Generation of continuously tunable laser sidebands in the submillimeter region , 1978 .

[66]  Aiting Jiang,et al.  Broadly tunable terahertz generation in mid-infrared quantum cascade lasers , 2013, Nature Communications.