Inkjet printing of sol-gel synthesized hydrated tungsten oxide nanoparticles for flexible electrochromic devices.

Tungsten oxide nanoparticles were synthesized via a sol-gel route using metallic tungsten as precursor, and were printed on a flexible electrode using inkjet printing in order to build solid-state electrochromic cells. Several spectroscopic techniques were used to characterize and compare tungsten oxide particles obtained from different origins. FTIR, Raman and X-ray diffraction spectroscopic measurements showed that the sol-gel synthesis described here produces nanoparticles mainly in an amorphous state with hexagonal crystalline domains and allowed the analysis of the hydration extent of those nanoparticles. The size was measured combining dynamic light scattering, sedimentation, and microscopic techniques (AFM), showing a consistent size of about 200 nm. The tungsten oxide nanoparticles were used to produce an ink formulation for application in inkjet printing. Solid-state electrochromic devices were assembled at room temperature, without sintering the tungsten oxide printed films, showing excellent contrast between on/off states. Electrochemical characterization of those films is described using cyclic voltammetry. The devices were then tested through spectroelectrochemistry by Visible/NIR absorption spectroscopy (400-2200 nm range), showing a dual spectroscopic response depending on the applied voltage. This phenomenon is attributed to the presence of two different crystalline states in accordance with results obtained from the spectroscopic characterization of the nanoparticles. The electrochromic cells had a good cycling stability showing high reversibility and a cyclability up to more than 50,000 cycles with a degradation of 25%.

[1]  S. A. Agnihotry,et al.  A case study of optical properties and structure of sol–gel derived nanocrystalline electrochromic WO3 films , 2006 .

[2]  Jean-Marie Tarascon,et al.  Flexible electrochromic reflectance device based on tungsten oxide for infrared emissivity control , 2002 .

[3]  S. Hashimoto,et al.  Lifetime of Electrochromism of Amorphous WO 3 ‐ TiO2 Thin Films , 1991 .

[4]  Andris Azens,et al.  Electrochromic devices on polyester foil , 2003 .

[5]  Mark S. Burdis,et al.  Electrochromism in Sputtered WO 3 Thin Films , 1996 .

[6]  S. A. Agnihotry,et al.  Electrochromic nanostructured tungsten oxide films by sol-gel: Structure and intercalation properties , 2006 .

[7]  Arild Gustavsen,et al.  Properties, Requirements and Possibilities of Smart Windows for Dynamic Daylight and Solar Energy Control in Buildings: A State-of-the-Art Review , 2010 .

[8]  Vivek Subramanian,et al.  Plastic-Compatible Low Resistance Printable Gold Nanoparticle Conductors for Flexible Electronics , 2003 .

[9]  S. Creager,et al.  Inkjet-printed electrochromic devices utilizing polyaniline–silica and poly(3,4-ethylenedioxythiophene)–silica colloidal composite particles , 2008 .

[10]  B. Pecquenard,et al.  Electrochromic Properties of Peroxopolytungstic Acid Thin Films , 1998 .

[11]  P. Judeinstein,et al.  Sol–gel synthesis of WO3 thin films , 1991 .

[12]  S. K. Deb,et al.  Electrochromic mechanism in a-WO3−y thin films , 1999 .

[13]  D. Lerche,et al.  Particle size distribution by space or time dependent extinction profiles obtained by analytical centrifugation (concentrated systems) , 2007 .

[14]  Yang Yang,et al.  Polymer electroluminescent devices processed by inkjet printing: I. Polymer light-emitting logo , 1998 .

[15]  Ronald Azuma,et al.  Recent Advances in Augmented Reality , 2001, IEEE Computer Graphics and Applications.

[16]  V. Russo,et al.  Nanostructured tungsten oxide with controlled properties: Synthesis and Raman characterization , 2007 .

[17]  H. Zeller,et al.  Electrochromism and local order in amorphous WO3 , 1977 .

[18]  S. Balaji,et al.  Low temperature synthesis of nanocrystalline WO3 films by sol–gel process , 2008 .

[19]  K. Bharathi,et al.  Effect of structure and size on the electrical properties of nanocrystalline WO3 films. , 2010, ACS applied materials & interfaces.

[20]  K. Chi,et al.  Excimer laser processing of inkjet-printed and sputter-deposited transparent conducting SnO2: Sb for flexible electronics , 2007 .

[21]  P. Monk,et al.  Chronoamperometric response of the cell ITO|HxWO3|PEO-H3PO4(MeCN)|ITO , 1995 .

[22]  C. E. Tracy,et al.  Electrochromic and optical properties of mesoporous tungsten oxide films , 2002 .

[23]  A. Akl,et al.  Influence of proton insertion on the conductivity, structural and optical properties of amorphous and crystalline electrochromic WO3 films , 2004 .

[24]  C. Lampert,et al.  Electrochromic characterization of sol-gel deposited coatings , 1998 .

[25]  E. Fortunato,et al.  Application of hybrid materials in solid-state electrochromic devices , 2009 .

[26]  Kil-Dong Lee Deposition of WO3 thin films by the sol—gel method , 1997 .

[27]  C. Ramana,et al.  Structural transformation induced changes in the optical properties of nanocrystalline tungsten oxide thin films , 2010 .

[28]  Gunnar A. Niklasson,et al.  Electrochromic tungsten oxide: the role of defects , 2004 .

[29]  J. Augustynski,et al.  Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications. , 2001, Journal of the American Chemical Society.

[30]  A. J. Parola,et al.  Electrochromism of Crystal Violet Lactone in the presence of Fe(III)/Fe(II) redox pair , 2009 .

[31]  R. David Rauh,et al.  Electrochromic windows: an overview , 1999 .

[32]  Gunnar A. Niklasson,et al.  Polaron absorption in amorphous tungsten oxide films , 2001 .

[33]  Takao Someya,et al.  Organic transistors manufactured using inkjet technology with subfemtoliter accuracy , 2008, Proceedings of the National Academy of Sciences.

[34]  Antonio Camara,et al.  Multiresponsive chromogenic systems operated by light and electrical inputs , 2009 .

[35]  S. Hodgson,et al.  XRD studies of thermally stable mesoporous tungsten oxide synthesised by a templated sol-gel process from tungstic acid precursor , 2009 .

[36]  C. Granqvist,et al.  Advances in chromogenic materials and devices , 2010 .

[37]  Bernard Desbat,et al.  Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide tydrates , 1987 .

[38]  C. Granqvist,et al.  Small polaron formation in porous WO3−x nanoparticle films , 2004 .

[39]  A. Facchetti,et al.  A high-mobility electron-transporting polymer for printed transistors , 2009, Nature.

[40]  W. Jaeger,et al.  Monitoring the stability of nanosized silica dispersions in presence of polycations by a novel centrifugal sedimentation method , 2009 .

[41]  Guozhong Cao,et al.  Inkjet-printed zinc tin oxide thin-film transistor. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[42]  R. Crandall,et al.  Dynamics of coloration of amorphous electrochromic films of WO3 at low voltages , 1976 .

[43]  Claes-Göran Granqvist,et al.  Electrochromic tungsten oxide films: Review of progress 1993–1998 , 2000 .

[44]  David R. Rosseinsky,et al.  Electrochromism and Electrochromic Devices , 2007 .

[45]  C. E. Tracy,et al.  Electrochromic coloration efficiency of a-WO3−y thin films as a function of oxygen deficiency , 1999 .

[46]  S. Badilescu,et al.  Study of sol–gel prepared nanostructured WO3 thin films and composites for electrochromic applications , 2003 .

[47]  J. Reynolds,et al.  Color control in pi-conjugated organic polymers for use in electrochromic devices. , 2010, Chemical reviews.

[48]  D. Ganguli,et al.  Sol–gel electrochromic coatings and devices: A review , 2001 .

[49]  H. Okamoto,et al.  Amorphous and Crystalline Peroxopolytungstic Acids Formed from Tungsten and Hydrogen Peroxide , 1989 .

[50]  David K. Benson,et al.  Chromic Mechanism in Amorphous WO 3 Films , 1997 .

[51]  Arokia Nathan,et al.  Special Issue on Flexible Electronics Technology, Part 1: Systems and Applications , 2005, Proc. IEEE.

[52]  Elvira Fortunato,et al.  Gelatin in electrochromic devices , 2010 .

[53]  Gunnar A. Niklasson,et al.  Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these , 2007 .

[54]  Mino Green,et al.  A thin film electrochromic display based on the tungsten bronzes , 1976 .

[55]  M. Berggren,et al.  Printable All‐Organic Electrochromic Active‐Matrix Displays , 2007 .

[56]  J. Livage,et al.  Aqueous precursors for electrochromic tungsten oxide hydrates , 1996 .

[57]  P. López-Cornejo,et al.  Dynamic Light Scattering Study of AOT Microemulsions with Nonaqueous Polar Additives in an Oil Continuous Phase , 1998 .

[58]  Claes-Göran Granqvist,et al.  Electrochromic coatings and devices: survey of some recent advances , 2003 .

[59]  P. Monk Charge Movement Through Electrochromic Thin-Film Tungsten Trioxide , 1999 .

[60]  U. Schubert,et al.  Inkjet Printing of Narrow Conductive Tracks on Untreated Polymeric Substrates , 2008 .

[61]  Markus Antonietti,et al.  Highly crystalline WO3 thin films with ordered 3D mesoporosity and improved electrochromic performance. , 2006, Small.

[62]  S. Balaji,et al.  Porous orthorhombic tungsten oxide thin films: synthesis, characterization, and application in electrochromic and photochromic devices , 2011 .

[63]  M. Panhuis,et al.  Inkjet deposition and characterization of transparent conducting electroactive polyaniline composite films with a high carbon nanotube loading fraction , 2007 .

[64]  S. A. Agnihotry,et al.  A comparison of electrochromic properties of sol–gel derived amorphous and nanocrystalline tungsten oxide films , 2007 .

[65]  Hsien-Hsueh Lee,et al.  Inkjet printing of nanosized silver colloids , 2005, Nanotechnology.